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1. Introduction

The objective of this study is to develop a constitutive theory capable
of describing the effect of mechanical loads on the form and stress distribution
in a growing body. Explicitly, if the final form and growth history of a grow-
ing material with memory are known, then what will the final form of the
body be if it experiences mechanical loads during the growth process. Conver-
sely, if the present state of stress and past history are known for the growing
body, then what is the distribution of the stresses if the body experienced
deformations during its growth. In other words, if some base history determi-
ning the form or state of stress is known for a growing body, then what are
the effects of perturbing this base history.

A major application of a theory of growing materials with memory is to
biological growth. For example, a major motivation for the development of the
constitutive relations in this paper is to determine the mechanical and growth
response of human bones to external loading situations. The solution to this
medically significant problem may someday find use in treating certain skeletal
system problems. Presently, however, there is a dearth of experimental data on
mechanically loaded growing materials. Most medical investigations have been
of a qualitative nature and are very helpful in formulating general constitutive
equations capable of describing the observed effects, but lack the data neces-
sary for the formulation and solution of boundary value problems. A large
literature exists in which the mechanical properties of preserved biological mem-
bers are described, but this literature has only minor validity in regard to
in-vivo growing bodies.

The collagen structure of the skeletal system is analogous to the cellulose
structure of wood. Both wood and bone have similar growth patterns, ortho-
tropic symmetry, and piezoelectric properties. The application of a theory of growing
materials to wood would be to attempt to control density, hardness and strength
by means of the application of external mechanical loads during growth.

There are various categories of growing bodies, both organic and inorga-
nic, and processes where mass is gained and processes where mass is lost. It
is worthwhile to note that many existing special theories fall within the general
framework of the theory of growing materials. For example, theories of crystal
growth, corrosion, diffusion, penetration of one solid by another, melting, for-
mation and flow of glaciers. etc.
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II. Balance Equations

The growing body will be denoted by B, where B is the object cclled
the growing body. Let B occupy a portion of a three dimensionzl Euclidean
space. The portion of this space occupied by B and described in a rectangular
Cartesian coordinate system, is called the form of B. The form of B is deno-
ted by B.

The mass of Band the balance equations B must satisfy, can be develo-
ped in very general terms. For example, in terms of Lebesque integrzls. General
treatments would be applicable to a wide range of bodies with certzin disconti-
nuous properties. This study is concerned with well behaved growing bodies
with continuous mass distributions. Thus Riemann integrals are of sufficient
generality for these bodies. The mass will be defined as,

(2.1) m:f pdV
B

where the concepts of density p, and volume ¥, of B in the from B are tzken
as intuitive.

The mass balance equation can now be written in terms of (2.1)

2.2) Do loav_ —-deA +deV
B

Dt
B 0B

The first term on the right hand side of equation (2.2) is a measure of the
flux of mass across the boundary of B. The second term measures the mass

increase due to sources in the interior of B. In keeping with the objectives

stated in the introduction, the surface mass flux term will be neglected. Neglect
of this term excludes this theory from being applicable to any but internal
mass source phenomena. Applying this restriction and the identity

(2.3) D v _Viav
Dt

where x is the position vector of a particle in B, yields,

Dp D

2.4 —dV +o—dV |- dV =0
@.4) f[m = ]fQ

B B
whence

Do

2.5 —+oVx=0.
(2.5) D ° o

In the transition from (2.2) to (2.5) the standard mathematical assumptions
used in deriving the ordinary balance equations must hold. It is possible to
define Q as the increase in mass per unit volume. This increase in mass 0]
will be called the growth intensity.

The standard equilibrium equation
(2.6) Sy, +ef,=0

applies to growing materials, were S is the stress and f the body force.
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III. Constitutive Equations

Let x be the position vector of a generic particle X of B. If B is growing

or deformfng, or both, then the growth or deformation can be described by
specifying the pocition of a generic particle x in time as a function of X. Thus

3.1) x=x (X, 1).
The deformation gradient is defined as
ox
3.2 X
(3.2) I=3%
and can be decomposed by means of a polar decomposition
(3.3) F=RU

where R is a pure rotation and U is a pure stretch. The stretching U =d was

used by Hsu [1] in developing constitutive relations for growing elastic bodies.
The general constitutive relation stated in [1] is

(3.4) d=f(t, 0. 0. 5, )
and a linear form of (3.4) for materials with constant density was used to solve

some boundary value problems.

To determine the present state of stress in a gtowing material with memory,
let this stress state be dependent upon the entire past histories of growth and
deformation. We define a material of this type to be a simple growing material.
Mathematically this statement can be expressed as a functional relationship,

(3.5) o ()= FE@I

where o is the rotated or Kirchoff stress tensor and E is the Green strain tensor
(3.6) E:%[FFT—I].

Thus E'is descriptive of the growth of the material as well as its deformation,

and any specific constitutive law will take into account the fact that growth
may cause internal stresses in the material. If the body under consideration was
created at some time, say, T=0, then we may write

(3.7) o (t) = FIE®), 11:
where the stiess is explicitly dependent upon the present time ¢. This allows
the consideration of the ageing of growing materials, or the change of material
properties with time.

The composite growth and deformation history E(r) can be decomposed
into a base history E,(r) due to growth and normal service loads and a pertur-
bation history e (z). For example, the base history of a human femur could be

its growth history and the deformations experienced by the femur in walking,
swimming, etc. For this base history there is experimental evidence concerning
the sfete of stress in various materials. In fact the base history may be inter-
preted as the normal mechanical life of a biological material.

For a state of isotropic growth, no deformation, and constant growth rate

(3.8) E,(0)-K(@)
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where K (t) is a linear function of time and yields equal extensions in the

prmclpal directions. However, for materials such as bone and wood growth is
anisotropic, the growth rate is a complex function of time and deformations
are produced by the growth process without external influences. Therefore, in
general K (t) is an anisotropic tensor and nonlinear in time. In any case, the
base hlstory for growth without external influences can be experimentally deter-
mined for many materials.

Now let the material be deformed in a manner so as to perform a per-
turbation on the base history and let the history of these perturbations be denoted
by e(r). Note that no restriction is placed upon the size of the perturbation.

The constitutive relation (3.7) may now be written as
(3.9) o ()= F LE(). e@. 15

where E, is measurable and e is chosen in a manner consistent with the objec-
tives of the experiment, or observed if a natural process is under consideration

Let us assume that the growing material with memory lends itself tc
description by means of a bilinear functional, ie. the functional is linear in E,
and e. In this case an extension of a representation theorem on bilinear functio-

nals in [2] can be applied and an exact representation of the constitutive rela-
tion (3.9) is obtained

(3.10) s)=[ [ Kt 1, %) Ey(my) e (z,) dry dy
00

In this constitutive equation -the effects of the perturbation are coupled with
the effects of the base history. This is desirable since in practice the material
can not separate out effects due to the external deformations and the deforma-
tions due to growth or normal service.

If we are dealing with a process where the effects due to the base history
can be separated from the perturbation history, then the constitutive represen-
tation can be simplifed. As a special case consider a deformation process
(history) where

(3.11) e(®=E()—E ()

defines the perturbation history. For this type of process the basic constitutive
relation (3.7) becomes

(3.12) o () =FlE, () +e (@), 1155

If we assume that the growing material has linear history dependent properties
then a theorem of Volterra may be applied and (3.12) becomes [3]

t t
(3.13) g(t)=fK(t, 1) E, (7) d~c+fL (E, (1), 7) e(z) dr.
o~ - o 7 7 ~
Note that if no perturbations are applied to the material then (3.13) reduces to

(3.14) c(t)=[K(t, 1) Ey() dv
AL 2
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which is the expression for the state of stress in a growing, ageing material
in unperturbed growth. If we have no knowledge of the base history of the
material, then a linear functional in the history E(z) should be used.
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