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1. Introduction

Sometime in one’s undergraduate career, one sees the statement that the
uniform limit of a sequence of continuous funtions is continuous. Clearly, this
is a statement regarding interchange of limits; i.e.

lim lim f,(x)=1lim lim f,(x).

X—»Xy n—rco n—>%®  X—>Xg
E. H. Moore [4] developed a generalized idea of convergence and showed that
for a function F(x,y) of two variables, if we assume that F( , ), F(x, )
converge uniformly in y, x respectively as x converges to x, and y converges
to y,, then the limits may be interchanged; i.e.,

lim lim F(x,y)=lim lim F(x, y).

X—rXg  Y—>Jo Yy—=>yp  X—>Xxp
Helsel [1] shows that for real valued functions of a real variable, the condition
of uniform convergence can be weakened to obtain a condition which is in a
certain sense necessary and sufficient for the interchange of limits.

These results can easily be generalized to include the interchange of gene-
ralised limits in a uniform space — sometimes defined as the most general
space in which the idea of uniform convergence makes sense. Because the proofs
of these results require only the definitions of generalized limit, uniform space,
(nearly) uniform convergence, and the idea of the proof that the uniform limit
of a sequence of continuous functions is continuous, it is believed that the
students should see the proof in the general situation so as to obtain a deeper
insight into the nature of the interchange of limits.

2. Definitions and Notation

If X is a non-empty set, a family %/ of subsets of X x X is called a uni-
formity for X if:

1) each U & 9 contains the diagonal {(x, x):x & X}
N VOUECUVEU
3) U, U,€U—~>3U, € 9 such that U, C U, N U,

8*
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HUcU>U={,x).(x,)cUteU

5) Uc 9 —3V & 9 such that V2 C U where V2=VoV ={(x, y):z€X
such that (x,z) &V and (z,y) € V}. Thus UE& 9 —3IW & ¢ such
that W3 C U.

The U’s in 9/ play the role analogous to that of the positive &' s in a
metric space. (x, y) € U is the statement analogous to d(x, y)<<e. The V in
(5) then corresponds to ¢/2; ie. (x,z)EV, (z, ) €V —(x,y) €& U corres-
ponds to d(x, z2)<¢/2, d(z, y)<e/2 >d(x, y)<e. The sets Ul[x]=
={y:(x, y) € U} play the role of spheres centered at x; thus we get a natural
concept of limit.

Recall that a non-empty set D is said to be directed if there is a transi-
tive binary relation < defined on D such that for every two points x, y & D,
there is a z & D for which x<{z and y<z.

Observe that the set of natural numbers and the set of real numbers are
each directed by both < and <. If 4 C R and a € R, the 4 — {a} is direc-
ted by

x<y=|y-a|<|x-a|, x,y € 4, xFa#}.

In fact this directing relation can be generalized to any metric space. It is
called the directing relation which describes x converging to a.

A net is a function whose domain is a directed set. Thus a sequence is
a net. A function with real domain (or any subset of a metric space as its
domain) can be thought of as a net in many different ways; each a & X gives
us a directing relation associated with x — a.

Is f is a net with domain D we sometimes write {a,},cp instead of
f:D— X. Thus net notation resembles sequential notation and in fact we para-
phrase the definition of sequential convergence (Cauchyness) to obtain the defi-
nition for net convergence (Cauchyness). It can be shown that every Cauchy
net in a complete metric space converges to a point of the space. (See
McShane [2].) .

Since the U & 9 for a uniform space takes the place of € > 0 for a
metric space we know how to define Cauchy net in a uniform space. Thus
the concept of completeness in a uniform space makes sense; in fact we define
a complete uniform space as one in which each Cauchy net converges.

If D is a directed set and v, & D, then Dy={v:v>>v,} will be called a
tail of D. Clearly each tail of D is directed so that any net on D is a net
on each tail of D. Also, the limit of the net on D (if it exists) will equal the
limit of the corresponding net on any tail of D. Thus if f is a net on some
tail D, of D we shall write ]1m f(x) for lim f (x) even though f(x) may not

xE D

be defined for x € D\ D,. We can do this smce if the limits of two such
“tail nets*‘ exist, these limits must be :qual (in a T, space).

Let D,, D, be directed sets with directing relations >; and >>, respec-
tively. Then D,xD, is a directed set when we define (d,, d2)>(d;, dy)=
=[d, >,d; and d, >, ds). Any function f defined on D, xD, is a net. In
addition, if x, & D,, y, € D, then f(x,, y) is a net (consider its domain as D,)
and f(x, y,) is a net (consider its domain as D,).
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Hence, if the range is a uniform space, we may consider the existence of
1) liinf(xo,y)
2) lim f (x, yo)
3) lim f(x, y)

X5 ¥

Also, if lim f(x, y,) exists for each y, € D, (or some tail of D,), then
{11m f(x, yo}yoe p, 1s a net on D, (or that tail of D,); if" 11m f(x,, y) exists for
all Xy & D, (or some tail of D,), then {llm S(X05 M}xoe b, 1s a net on D,, (or
that tail of D,). Thus we can also conSIder the iterated limits.

4) lim [lim f(x, y)]

5) tim i £ )]

3. Nearly Uniform Convergence

Throughout the rest of this note f will denote a net f.D, xD,—>X
where (X, %/) is a uniform space. The standard concepts of uniform convergence
translate into the following.

Definition: lim f(x, y) is uniform in y (or f(x, y) converges uniformly
on D,) if ’
1) lim f(x, y) exists for each y € D,
2) l;e 4L —3v, & D, such that (f(x,, ), lim f(x, ¥)) € U when x,>v,
and y € D,. ’

h‘fhm £(xyy)

-——-~ € or U tolerance on any
horizontal line in this
— D, band
Xo = V1

Definition: f(x,y) is uniformly Cauchy on D, if
U& 9U—3v, € Dy such that [f(x,, ), f(x,, »IEU
when x;, x, >v, and y & D,.

D2 : f(xlvy)
/1/7' f(xz»y)

P

¥y

€ or U tolerance on any
—<—T—— horizontal line in this

'
i
|
|
!
T
i
I
|
1
1
I
!
i band




118 R. C. Steinlage

We shall find it useful to weaken these concepts as follows:

Definition: limf(x, y) is nearly uniform in y if there is some v, & D,
X

such that limf(x, y) exists for y>>v, (ie., limf(x, y) exists on some tail
X X
of D,) and

*Ue9U—>3 (v, v,) & Dyx D, such that
[hmf(xa yo), f(x*’ yo)] € U When (x*, yo)>(V1, Vz)-

Note: W.l.o.g. v,>v,.

Definition: f(x,y) is nearly uniformly Cauchy in y if
** Uec 9—3(vy, v,) € Dy x D, such that [f(x,, y,),
f (5 ¥l € U when (x;, )=, v,), =1, 2.
If X is a metric space, (*) would read as follows:
* e>0-—>3(vy, v,) € D, x D, such that d[f(x*, y,),
limf(x, yl<e when (x¥, 30> (v, v,).

A similar restatement holds for **. The reader may find the following
illustrations suggestive of what is meant by the above concepts.

5 _lin £Goy,) D, AC7,)
, s x . £(x
2 £(x* 7)) i
il ° Loa— e
VA
J > v [~
7> “S_¢ or U tolerance 23—
& on any horizontal
line in the indicated
box
N E———
Dl 1
nearly uniform in y nearly uniformly Cauchy in y

N.B. ** does not even say that {f(x, y,)}xcp, is Cauchy in x for a
fixed y, since the v, depends on U. Consider the following:

Example 1: Helsel [1]. Let f(x, y)=ysinl/x for (x,y) in the open
Ist quadrant. Use directing relations which describe x— 0, y— 0. Clearly
f(x,y) is nearly uniformly Cauchy in y yet {f(x, ¥)}x>o0 is not Cauchy nor
does lim f(x, y,) exist for any y>0.

x—>0
Of course uniform convergence (Cauchyness) implies nearly uniform

convergence (Cauchyness). The following example shows that these ‘“aearly”
concepts are indeed weaker.

Example 2: (Helsel [1]). Let f(x,y)=1/n if x+y=1/n with y>x,
and 0 otherwise on the plane with the origin deleted. Use the natural directing

relations which specify x— 0, y— 0. L1m f(x, y) is aearly uniform in y but
not uniform in y.
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Since uearly uniform Cauchyness does not imply Cauchyness, the existence
of siugle limits must be assumed before the Cauchy criterion can be established.

Theorem 1: If limf(x, p) exists on some tail of D, (say for y>>d,& D,),
X

then this limit is nearly uniform in y if and oaly if f(x, y) is nearly uniformly
Cauchy ia y.

Proof: The standard ¢/2 argumeat is what is needed here. Let Uc U
be given; 3 symmetric V' C %/ such that V2CU. If the limit is nearly uniform
in y then 3 (v, v,)E D, x D, such that [f(x*, y,), limf(x, y)]lEV when (x*,
)30, v2). Thus [£(x,, 3o, £ (i, yIEV oV C U when (x, o) > (v, ¥,), i=1, 2.
Hence f(x, y) is nearly uniformly Cauchy in y.

Conversely, if f(x, y) is nearly uniformly Cauchy in y, then 3I(v,, v,) E
& D, x D, such that [f(x, 3,), /(5 y)EV When (x, y)>=(, vp), i=1, 2. Fix
Yo D, such that y,>>v,. Then IviE D, such that [f(x,, ), limf(x, y)lEV

when x,>vi. Fixing v;>>vi, v; we see that [f(x,, y,), limf(x, yQl&VoVCU
. X

when x,>v;. But y,>>v, was arbitrary so this last result holds whenever (x*,
Vo) > (Vy, Vp); i.e. the limit is nearly uniform in y.

£(x47,)
D £Gq1Yg) 14m £(x7,) Dy /lim £Gay,)
> g x /Xt (k)
2% 07 ,) ( /
N 7/ , -,
3 v,
K \L*’ "cloge" 9 " elose )} \tw-)"close"
MR TV,
T —
x > \)1 X > Vl
- ] —— D

Because of the last theorem we should consider another example, which will
show us that the lim f(x, y) can exist oi some tail of D, without being nearly

uniform in y.

Example 3: (Helsel [1])

1 if x=y x>0, y>0

Let , P) =
/) [0 if x£y (-

with directing relations so that x -0, y — 0. ')

We define “‘nearly uniform (—ly Cauchy)” in x
similarly and obtain the analogous results and similar
examples.

4. Interchange of Limits

We are now ready to discuss iterated aad double limits. The following
thcorem shows that the <“nearly uniform” concepts are intimately related to
the existeace of the double limit.
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Theorem 2: f(x,y) is Cauchy in both variables simultaneously if and
only if f(x, y) is nearly uniformly Cauchy in each variable separately. Thus, if the
double limit, lim f(x, y) exists then f(x, y) is nearly uniformly Cauchy in x

Xy
and in y. Then if either of the siagle limits exists on some tail, that single
limit is nearly uniform.

Proof. Assume f(x,y) is Cauchy in x and y simultaneously. In virtue
of the symmetry of the problem, we need only establish the nearly uniform
Cauchyness in one of the variables.

Uc 9 —>3(v; v,) & D, x D, such that [f(x, v, f(x ¥ EU
when (x;, y;) > (v;, v), i=1,2.

Thus [/ (x;, yo)s f(x2, )1 € U when (x; ¥,) > (v, v,), i=1,2. This establishes
the nearly uniform Cauchyness in y.

5 £(x,17,) : Conversely, assume f(x,y) is nearly
d Z £(x»3,) uniformly Cauchy in x and in y.

% B Ueusaveay

7> such that V>C U. 3(vy, v,) € D, x D,
, such that [£(x,, o), f (¥ ¥0)] € V When

D X0 Yo) > (Vg5 V), i=1,2.
3 (v, v)) € D; x D, such that [f(x,, ), f(xp Y1 EV

when (xg, y,) > (v5, v,), i=1,2.

3 (vs5, vg) > both (vi, v,), (v5, ¥,).
Then [f(x, 7)), £ Gz Y =11 Cers 2, £ o 7] 0 Lf (5 22)s £ Gy )] €

VoV CU when (x;, y) > (vs v6) i=1,2.

Thus {f(x, y):(x, y) € D, x D,} is Cauchy.
P2 Pl (% 75)

———ﬁ’—f(xavyz)

e —
X > vy

e/2 or V toler-
ance within the

indicated box J >y
on any vertical 6 I f(xl,yl)
or horizontal
line
—
X > vg

D

1

Note D in the above theorem that the single limits may not exist even
though the double limit does in a complete space. Consider the following,
for example.

Example 4: (Helsel [1].)
sin 1/x  ify>x>0

T
xsinlfy ifx>y>0

where the directing relation specifies that x — 0, y — 0.,
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We now prove the general theorem on interchange of limits. Of course,
the iterated limit is a meaningless concept unless the single limit exists on some
tail (of D, or D,). Thus the assumptions in the following lemmas and theorem
are minimal.

Lemma 3.1; If the single limits exist on respective tails, then nearly
uniform convergence in x is equivalent to nearly uniform convergence in y.
Thus 1) and 2) in the theorem below are equivalent even in the absence of
completeness.

Proof: In virtue of the symmetry of the problem we need only estab-
lish the implication in one direction. Assume that lim f(x,y) is nearly
uniform in y and hence is nearly uniformly Cauchy in y. U € 9/ — 3 a symmetric

V & 9 such that V3 C U.
3(v;, v,) € D, x D, such that [f(x,, ), f(x; »)] €V when
‘ G, ¥) > (v, vy), i=1,2.
Fix x,>v; such that liin S (x5, ¥) exists.

dv, such that [f(x;, 1), f (%5, )] €V when y,>>v,, i=1,2

since a converging net is a Cauchy net. Let v, >v,,v,. Then if (x, y)>(v;, v,) i=1,2

we have ,
V& 30, £ 2= (%, 31, f (%3 3y)]
o [f (2 ¥1)s S (325 ¥2)]
o [f (%2 y2), f(x, ¥2)]
EVoVoV_CU

Thus the limit is nearly uniformly Cauchy in x and hence nearly uniform

in x by Theorem 1.

h x

2 *2

'}'1 ______

¥y > v

Y2

X > vy

Example 5:

Letting £ (x, y) - [1, x irrational

0, x rational

we see that the above lemma cannot be established for nearly uniform Cau-
chyness. Note also that, in this example, only one of the single limits exists
(use directing relations such that x— 0, y—0, or x — o, y— o0, etc).

Considering Example 2) again, we see that, even though the concepts
of “nearly uniformly convergent” in x and in y are equivalent, the concepts
of “uniformly convergent” in x and in y are not equivalent.
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Lemma 3.2: If the double limit lim f(x, y) exists and if one of the

X,y
single limits exists on a given tail (of D,, D, respectively) the corresponding
iterated limit exists and equals the double limit, (even in the absence of
completeness).

Proof: Again a standard ¢/2 calculation is what we need. By symmet-
ry of the problem we may assume lim f(x, y) exists on some tail of D,. Note

X
that the existence of the double limit implies the nearly uniform convergence of
the single limit. Thus U € % —3 a symmetric ¥V & 9/ such that V2 U.

3(v,v,)) € D, x D,
[lim f(x, p), f(x;, )] €V whea (%15 ¥1) > (v v2).
But 3 (v;, v,) such that [limf(x, y), f(x, )&V when (x,, Y1) >(v; v,). Let
(s, V)= both (v, v,), (vss ,). Fix x,>v,. Then
y>V6 - [llmf(xs y)7 hmf(x, y)] :[limf(x, y): f(xla yl)]o[f(xl’ yl)a
X, ¥y ke Xy y

such that

lim f(x, y)IEV oV CU; ie. limf(x, yy=limlim f(x, y).

X ¥ y x
Dy
—> lim f(x,yl)
¥1 *
B / [ f(xl,yl)
I

€/2 or V [ p = lin £(x,y)
tolerance XY !

oy

Theorem 3: Let f: D, x D,—> X where (X, 9/) is a complete uniform
space. Assume that the single limits lim f(x, y), limf(x, y) exist on tails of D,, D,

x L y
respectively. Then the following are equivalent:
1) lim f(x, y) is nearly uniform in y
2) lim f(x, y) is nearly uniform in x

y
3) The double limit exists
4) The double limit and both iterated limits exist and all are equal.

Proof: We have already established that 1) < 2), and 3) & 4), and
4) — 1) even in the absence of completeness. Thus the only implication yet
to be proved is that 1) — 3). Assuming 1) we see that both single limits are
nearly uniform (since 1) and 2) are equivalent) and hence f(x, y) is nearly
uniformly Cauchy in x and in y. It then follows from Theorem 2 that
{f(x, ¥)}x.yep,xp, is Cauchy; since the space is assumed to be complete, the

limit lim f(x, y) thea exists.
X ¥
In the above proof we needed the existence of the single limits to obtain

the Cauchyness of {f(x, »):(x, y)ED, x D,} since 1) and 2) in terms of nearly
uniform Cauchyness are not equivalent as Example 5) shows.
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Thus the double limit can exist only if the single limits are nearly uniform
and in this case the iterated limits also exist and all are equal. Again considering
Example 3), we see that the iterated limits can exist and be equal without
either single limit being nearly uniform. Of course, the double limit cannot
exist in this case.

We emphasize the generality of the above work by citing several situations
which are included in the theory.

Example 5: Let f(x,y) be a function of two real variables which is
defined for points arbitrarily close to (@, b). Depending on what kind of
limits we want to consider we consider rectangular ‘neighborhoods” of (a, b)
where (@, b)) may be a corner point, side point, or interior point of the
rectangle. (See Helsel [1].)

|

1im £(xy)
x»a+

|

1im £(x,y)
X=a

:\
1im £(xy)
X3

y—-b+ y--b" y-b

Of course, each side of such a rectangle is a metric space and can be
directed, as discussed earlier, so that x—a and y—>b. Note that we don’t
even need to have f(x, y) defined for all points of the rectangular “neighborhood”.
All we need is a subset D, of R for one side, a subset D, of R for the other
side such that f(x, y) is defined when (x, y)ED x D,. Of course there must
exist points of D, x D, which are arbitrarily close to (a b). “hm f(x, ) exists

on a tail of D,” translates into “hm f(x, y) exists for all ¥ suff1c1ent1y close
to b (such that f(x, y) is defmed on D, x{y}).

Example 6: Let f,:]—R for n=1, 2... where [ is an interval (or any
metric or uniform space for that matter; we may likewise consider functions
with values in a uniform space). Let f, > f on I and let each f, be coatinuous.
Then f is likewise continuous.

Proof: Fix x, € I. Let D, be the set of natural numbers and let D, be
directed with the relation which specifies x — x,. Consider F:D, xD, >R
defined as follows: F (n, x) =f, (x).

lim F (n, x) =lim f, (x) exists for each x and is (nearly) uniform in x since

e>0—>IND|f,(x)—f(x)| <e for n > N. Thus the iterated limits exist and
may be interchanged; i.e.

f(xp) =lim f, (x;)=1lim lim f, (x)=1lim lim f,,(x)—hm S(xy)-

n—> n— X—Xg X—>Xg B—>%

Hence f is continuous at Xx,.

N.B. In the above example we could have obtained continuity of f at x,
by assuming only that f, —f nearly uniformly at x, (i.e with the D, relation
above) and that each f, is continuous at x,.
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Example 7 (See Helsel [1]). Let the sequence of r.v. functions In
converge to f on an interval I containing x,. Let the derivatives f, exist on I
and converge (nearly) uniformly at x,. Then f’(x,) exists and f, (xp) =1 (x,)
on I; ie. lim lim Mﬂ:lim lim Z&)—_M

n—>0 X->Xg X — x0 X—>X n->00 X — xo

Proof: Fix x, &I and use the directing relation on I which describes
x —x,. Consider
P ACEIACY
X —X,
By the mean value theorem

|l’”, (x) —fm (Xo)] - [fn (x) _fn (xo)] ;:f;n (E_,) _f:z (g)
(x—x,)

for some § between x and x,;

thus
F(m, x)—F(n, x)=fmE)=fxE)
for some & between x and x,.
But f, converges nearly uniformly at x so ¢ > 0—3N,$ such that | f m &)—
—frn(€)| <e when n,m > N for all £ € I such that |& —xy|<<3. Thus ¢ > 0 —
— 3N such that | F (m, x) — F (n, x) | < € when n, m > N for all x&l|x—x,|<8,
XF#X,.
This says that F (n, x) is (nearly) uni-
formly Cauchy in x. Both single limits

F(n,%) €—— | lim F (n, x) :f(x) — f(xp)
n>N n—>o X — X,
F(m,x) < [ lim F(n, x) =f (xy)
X—>Xg
Yo ! exist by assumption. Thus both iterated

limits exist and are equal; i.e.
3f (xg) =lim £ (x,).

Note that we do not assume continuity of the derivatives f, as is usually
done. Also, if we assume that f;, = on I and that ff,x) converges for some Xx,
then f, = to some f and f,—f on I; a similar proof holds.

Example 8. Let {f,} be a sequence of real valued functions defined
“on an interval I{a, b]. We call

' P={a=x,<t <x <b<x,<-- x,_1<E,<x,=b}

a partition of /. If we define P, > P, to mean ||P,| < || P, | where ||P|/=
= max |x;—x,_, |, then the class 7 of all partitions of 1 is clearly directed by >.

1<i<n

For each f:I-—+ R, we define S(P, f)= Zn S &) (x;—x;_,). Thus

i=1

b
f fx)dx = lim S (P, f)
a re®
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if this limit exists. If lim f,, (x) =f, (x) for each x € I, it is clear that lim S(P, f,) =

n—>o

=S(P,f) for every P& P; if f, converges uniformly to f, on I, then
lim S (P, f,) is uniform in P. If we assume in addition that each f, is integrable

n—»oo

(ie. that lim S(P, f,) exists for each f,), then the conditions of Theorem 3
PER

are satisfied and
Hm lim S (P, f,) =lim lim S (P, f,);
P n n P

Le.
. b
lim S (P, f,) = lim f £, (x) dx.
P n

b

b b
Thus f f,(x)dx exists and j £, () dx = lim [ f,(x)dx.

n—ro0
a

Example 9. Let R=[a, b] x [c, d] be a bounded rectangle in the plane.

d b bd
We ask when fff(x, y)dxdy :fff(x, y) dydx.

Let P—{a=x,<E <x <~ - - <x, <E,<x,=b} be a partition of the

interval [a, b] and

R. .
ij
4
Q={c=y,<n<y<-- C LY <My <thy, = b} v4
be a partition of the interval [c, d]. We form the
partition c _
PxQ={R;=[x;_1, x] x[¥;_1, ¥1;

(‘ii: 7];) ] i’ .]} Of [a’ b] X [C, d]
We shall define the norm of the partition PxQ =R, ||R|, as the max|R;|

where | R, |=max (| P;|, | Q;]). For such partitions R,, R, of [a, ] x[Z,Jd] we
define R,>-R, to mean that each R; of R, is contained in some R; of R,.
If PxQ=R={R; (&, 1)}, we define S(Px Q)=SR)=2/(, n) 4(R;) where
A(R,)-area of R,. 7

S (P x Q) is nearly uniformly Cauchy in Q if

e>0—>3P,, O, such that [S(PxQ)—S(P*xQ|<e
P, P*>P and Q>0,.

when

Let us assume that the y-sections f (&, y) are uniformly equicontinuous
functions of x; i.e.,

€

2(b—a)(c—d)+1 -

€>0—38>0 such that |f(E*, )~ fE*, »)| <
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for all y when |E—E&*|<3. Then if P, is any partition of [a, b] for which
|P;]|<8& and Q is any partition of the interval [c, d], we have for P*>>P,

|S(P,, Q)—S(P*, Q)| =] gf(a,, ) (%= %) ()= 1)
= 2 S ey 1) G = 3 ) (7 =3)-) |
— % |y] — Y1 1 [ El:f(‘ip 7)1) (x,-—xiﬂl)—kz*f(ik*, 7]]) (xk‘ _xk‘—l)]‘ -

Xph=X.
=21y =nallZrG L 2 e 0] = 27 G ) G =3 )|
Jj i Xk _1=%; 1 *

Xpw =%}
<2 1y=yal2 2 1 Com)—f (s )| Gk xee 1)
J i Xpx_1=X;j_1

€

<> |y=¥] - £—
&7 T g (e—d)+1 2

Thus |S(P, Q)—S(P*,Q)|<e when P,P*>P, and Q is any partition of

[c, d]. Now, in order to apply the interchange-of-limits theorem we need only

assume that the single limits exist; i.e. that

lim S (Px Q) and lim S(P x Q)
P Q

exist, But
li;n S(PxQ)= ]i;n zf(gv 1) (5—X;_1) (;—Y;-1)
= Z [ liPm Z fEs, ) (x—x;_1)] (yj—yj—l)
- b -
= ,n,)d —Y;i_1)-
jZlJ fx ) xJ(yj Vi—1)
Similarly

lién S(PxQ)= Z[ cfdf G ) dy] (xi—X;_1)-

Thus the single limits exist provided all sections (x or y) are integrable.
Then, observing that

b
lim lim 5 (Px 0~ lim 3 [ f £ dx] —;-1)

d b
=fff(x,y)dxdy

b d
and lim lim S(PxQ)zf [f(x,y)dy dx
P Q .
we apply the interchange-of-limits theorem to conclude that

Lﬁ}g S(PXQ)=fff(x,y)dydx=fdfbf(x,y)dxdy
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when all x-(or y,-respectively) sections are integrable and the family of y-sections
(respectively x-sections) is uniformly equicontinuous. Of course

]imS(PxQ):Jff(x,y)dA
P, Q

provided the double integral exists.
We could also apply the above r:sults to double sequences {s,, ,} or
double series ZA

In closmg we observe that if we have 2 class of fanctions f, and define
F(x,y)=f,(x), thea “nearly uniform in »” might be interpreted as “nearly
equicontinuous**,

5. Iterated Limits

Because of the last example in which

d b b d
f‘ff(x,y)dx dy:fff(x,y)dy dx

in the possible absence of the existence of f f f(x, y)d A, we might inquire

R
into the nature of the interchange-of-iterated-limits in the absence of the double
limit. Thz situation here is even more elementary. Just as in the proof that
the uniform limit of continuous functions is continuous, a particular f,, which
is close to f is used, a particular f( ,y,) or f(x, ) which is close to the
limit function will be used

Definitioa. If lim f(x, y) exists on some tail of D,, this limit is said
to be discreetly-uniform {n x provided
Uc U y* < D,—~3y,>y* and Ix, € D, such that
Lf(x, o) liym S, MEeEUVx>x,

Yo t + + f()',yo
i ! 'S;.' f: or U tolerance between these
' | t two functions on this "neigh-
! borhood",
T f lim £{x,y)
! ¥
[

A similar definition is given for discreetly-uniform in y.

Theorem 4. Let f: D, xD,—~X where (X,%/) is a uniform space.
Assume that the single limits 11m f (x, »), llm f(x,y) exist on tails of D,, D,

respectively. Then the followmg are equlvalent
1) lim lim f(x,y) exists and lim f(x, y) is discreetly-uniform in x
y x y

2) lim lim f(x,y) exists and lim f(x, y) is discreetly-uniform in y
X ¥y X

3) lim lim f(x,y)=1lim lim f(x,y).
y x x y
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Proof. It clearly suffices to show that 1) and 3) are equivalent in virtue
of the symmetry of the statements.
1) > 3). V&9 —->3U=U-" such that 4D U3 C V.
3y* such that [lim f(x, y), lim lim f(x, y)] € U Vy > y*.
x ¥y x

Then 3y,>>y* and 3Ix, such that [f(x, y,), limf(x,y)] E UVx>x,. But
3xl >x0 SUCh that [f(xa J’o), hm f(xs yo)] E vay>x" Then

[lim £ (x, y), lim lim (x, p)] =[lim f(x, ), £(x, y)lo[f(x, y,), lim f(x, x)]o
y y X y X
[lim f(x, y,), lim lim f(x, y)] C UcUoUCV Vix>x,.
X y X
Thus lim lim f(x, y) exists and equals lim lim f(x, y).
x y y x

3) — 1). Conversely, we are assuming that both iterated limits exist and
are equal. UES QYU ~»3IV =V-1 =9 such that V3 C U. There is a » €D,

such that
[lim f(x, y), lim lim f(x, )] €V Vy>y,
x ¥y x

and there is an x; & D, such that
[hmf(x’ y)a hm hm f(x3 y) E vV Vx>xl
y X y

Then y* € D, —~3y,>y*, y, and for f( , y,) there is an x,>>x, such that
[f(x’ y0)9 hmf(x, y)] e V Vx>x0.

Thus [f(x, J’o)a thn f(x9 y)] =
[f (s yo), limf (x, yo)lollim S po)s liym li;nf (x, y)]o
[lim lim f(x, y), lim f(x, »)] EVoVoV C UVx >x,.

We see that Example 3 satisfies the conditions of the above theorem
while the double limit does not exist. Thus the single limits in this case are
discreetly-uniform but not nearly uniform.

Corollary 4. Let {f,} be a convergent sequence or net of mappings
from a metric space (X, d) to a uniform space (¥, 9/) each of which is conti-
nuous at x, € X. Then the limit f is continuous at x, if and only if for every
Uc 9 and N > 0 there is an n, > N and a 8 > 0 such that [f,, (%), f(x)] € U
when d(x,, x) < 3. This is likewise equivalent to: lim f(x) exists and for every

X > X

U & 9 and 3>0 there is an x, such that d(x,, x1)<°8 and an N >0 such that
[fa(x)s fu(xp)] € U whenever n > N. [A sort of twopoint equicontinuity?].

Proof. This follows immediately from Theorem 4 when X is directed
to describe convergence to x,.

The obvious generalisation of Corollary 4 to topological spaces generali-
zes a result of Marjanovic [3].
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