COMPLETION OF THE SPACE C_s

B. Stanković

(Communicated December 3, 1971)

In an earlier paper [8] we constructed two subspaces C_s and \overline{C}_s of the field K of Mikusiński's operators [5]. C_s is a space of B_0^* type [4] and \overline{C}_s of B_0 type, $C_s \subset \overline{C}_s$. Now we constructed the least space of B_0 type containing C_s .

In the field K of Mikusiński's operators we have the definition of the limit of a sequence. For the definition of sequence convergence in K it is not always true that $\overline{(A)} = \overline{A}$ [9]. Morever, for every $k \ge 2$ there exists a subset $B \subset K$ such that $\overline{B^{(k)}} \ne \overline{B^{(k-1)}}$ [2] (we profit by the notation $\overline{(B)} = \overline{B^{(2)}}$). For this reason it is impossible to make good use of the known theory of topological spaces. T. Boehme [1] constructed a topology which has special properties in connection with the defined limit in K. Some authors such as D. O. Norris [7] and G. Krabbe [3] defined a topology for subsets of K. Our subspaces C_s and $\overline{C_s}$ were constructed to make easier a theory of differential equations in K.

First some notations.

We shall let $f = \{f(t)\}$ denote the representation of f(t) in C (C is the algebra of continuous complex valued functions defined on R^+) and s the differential operator. The elements of K are "convolution quotients" $\frac{f}{g}$, where f and g belong to C, $g \neq 0$. Furthermore, we denote by $F_p(t) = t^{-p-1}\Phi(-p, -\sigma; -t^{-\sigma})$, t>0 and $F_p(0)=0$, p>0, $0<\sigma<1$, where Φ is the known function of E. M. Wright [10]:

$$\Phi\left(\mathbf{v}, \ \mathbf{\rho}; \ z\right) = \sum_{n=0}^{\infty} \frac{z^{n}}{\Gamma\left(n+1\right) \Gamma\left(\mathbf{v}+\mathbf{\rho}\,n\right)}$$

This function $F_p(t)$ has the following properties used here:

1.
$$F_p \in C$$
, $p \ge 0$; **2.** $s^{\beta} F_p = F_{p+\beta}$, $p \ge 0$, $\beta \ge 0$.

By C_s we denoted the set of all members of K of the form $s^{\beta}f$, $f \in C$, $\beta \geqslant 0$. C_s forms a commutative algebra where the product, sum and scalar product are defined in the usual way, making use of those in K.

The consequence of the second property of F_p is that the convolution by F_p maps C_s into C. So we can define a sequence of seminorms $v_{k,p}$ in C_s :

$$v_{k,p}(s^{\beta}f) = \operatorname{Max}_{0 \le t \le k} \left| \int_{0}^{t} F_{p+\beta}(t-u) f(u) du \right|$$

condensed to:

$$\mathsf{v}_{k,p}(\mathsf{s}^{\mathsf{g}}f) = \max_{0 < t < k} |F_{p+\mathsf{g}}f|.$$

This is a monotone and saturated sequence of seminorms.

It is easy to see that for a fixed $p \ge 0$ C_s is a space of B_0^* type. The topology τ_p defined in this way is finer than by Mikusiński, but not so fine as by Norris.

The space C_s is not isomorphic with a normed space and is not complete for any $p \ge 0$

We will now introduce the space \overline{C}_s^p which is the least space of B_0 type which contains C_s .

Definition. \overline{C}_s^p is the set of all elements $\frac{v}{F_p}$, where $v \in C_0$, C_0 is the subalgebra of C of those elements f for which f(0) = 0.

The sequence of seminorms $v_{k,p}$ for fixed p is defined in \overline{C}_s^p in like manner as in C_s ,

$$v_{k,p}\left(\frac{v}{F_{p}}\right) = \max_{0 \le t \le k} |v(t)|$$

The space \overline{C}_s^p is homeomorphic with C and complete.

Proposition. For a fixed p \overline{C}_s^p is the least space of B_0 type containing C_s .

Proof. — We know that for every $p \ge 0$, $\beta \ge 0$

$$s^{\beta} = \frac{F_{p+\beta}}{F_p}$$
 and $s^{\beta} f = \frac{F_{p+\beta} f}{F_p} = \frac{G}{F_p}$.

By supposition that $f \in C$, it follows that G(0) = 0 and $s^{\beta} f = \frac{G}{F_p}$ belongs to \overline{C}_s^p . Consequently $C_s \subset C_s^p$.

We shall show that C_s is also dense in \overline{C}_s^p , $p \ge 0$. This fact follows from Mikusiński's theorem [6]:

Theorem. For a fixed $g \in C[0, T]$, which does not vanish identically in the right neighbourhood of 0 the set of convolutions gk with $k \in C_0^{\infty}[0, T]$ is dense in $C_0[0, T]$.

 $C_0[0, T]$, is the subclass of functions belonging to C[0, T] which vanish at 0.

We shall let $\frac{v}{F_p} \in C_s^p$. In view of Mikusiński's theorem just mentioned for a fixed p and every n natural number there exists an element $w_n \in C_0^\infty$ [0, n] such that:

$$\max_{0 \le t \le n} |w_n F_{p+\beta} - v| < \frac{1}{n}.$$

This implies that:

$$v_{k,p}\left(s^{\beta} w_n - \frac{v}{F_p}\right) \le v_{n,p}\left(s^{\beta} w_n - \frac{v}{F_p}\right) \le \frac{1}{n}$$

for all $n \ge k$.

A neighbourhood of $\frac{v}{F_p}$ contains a ball of the form $v_{q,p}\left(x-\frac{v}{F_p}\right)<\frac{1}{m}$. We will show that $s^\beta w_n$ belongs to this neighbourhood for $n\geqslant \max\left(m,\,q\right)$:

$$\mathsf{v}_{q,p}\left(s^\beta\,w_n - \frac{\mathsf{v}}{F_p}\right) \leqslant \mathsf{v}_{n,p}\left(s^\beta\,w_n - \frac{\mathsf{v}}{F_p}\right) < \frac{1}{n} \leqslant \frac{1}{m} \; .$$

REFERENCES

- [1] T. Boehme, On Mikusiński operators, XXXIII (1969), 127-140
- [2] M. Budimčević, B. Stanković, The closure in the space of Mikusiński's operators, Publications Inst. Math. Beograd T. 11 (25) (1971), 115-117.
 - [3] G. Krabbe, Ratios of Laplace transforms, Math. Ann. B. 162 (1966), 237-246.
- [4] S. Mazur, W. Orlicz, Sur les espaces métriques linéaires I, Studia Math. X (1948), 184-208.
- [5] J. Mikusiński, Sur les fondements du calcul opératoirs, Studia Math. XI (1950), 41-70.
- [6] J. Mikusiński, Convolution approximation and shift approximation, S.udia Math. XXVII (1966), 1-8,
 - [7] D. Norris, A topology for Mikusinski operators, Studia Math. 24 (1964), 245-255.
- [8] B. Stanković, Espace C_s, le sousespace des opérateurs de J. Mikusiński, Bulletin Acad. Serbe. Sc. et Arts XXXV, № 5 (1966), 51—61.
- [9] K. Urbanik, Sur la structure non-topologique du corps des opérateurs, Studia Math. XIV (1954), 243—246.
- [10] E. Wright, The generalized Bessel function of order greater than one, Quart. Journal of Math. Oxford series, VII, No 41 (1940), 36-48.