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Summary

A two-dimensional flow of a viscous, incompressible rarefied gas along
an infinite flat plate is analysed under slip boundary conditions and the suction
velocity varying periodically with time. Separate solutions are developed in
following two cases:

i) Constant free stream velocity with suction varying periodically

ii) Both the suction velocity and the free stream velocity vary perio=-
dically with time and with the same frequency.

1t is observed that tha shape of the mean velocity profile is changed
due to the periodic variation of the suction. The mean value of the wall
shearing stress is also altered in both the cases.

1. Introduction

An oscillatory flow of an incompressible viscous fluid past an infinite
plate with constant suction velocity, has been considered by Stuart {1] under
no-slip boundary conditions. But in case of the flow of the low-density gases,
the no-slip boundary conditions are replaced by the slip-velocity boundary
conditions. These have been discussed by Schaaf and Chambre’s [2]. Stuart’s
problem was later-on studied by Reddy [3] under slip-flow boundary conditions
and it was found that in the slip-flow regime i) the amplitude of the skin-
friction never exceeds a finite limit ii) the phase-lead of the skin-friction fluc-
tuations over the main stream tends to zero for large frequencies and iii) the
back-flow at the plate may be avoided.

Recently, Messiha [4] extended Stuart’s problem to the case of variable
suction velocity under no-slip boundary conditions. Soundalgekar [5] studied
Messiha’s problem under slip-flow boundary conditions. The hydromagnetic
flow corresponding to Stuart’s problem was investigated by Suryaprakasarao
[6,7] and corresponding to those in references [3], [4] and [5], was investigated
recently by Soundalgekar [8,9,10]. In these last three papers, the induced
magnetic field was, however, neglected.

In a recent paper, Kelly [11] investigated under no-slip boundary condi-
tions, the effects of time-dependent suction on the flow of an incompressible,
viscous fluid past an infinite plate. In the case of periodic variation of the
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suction velocity, Kelly has observed that che shape of the mean velocity profile
is affected which is absent in all the earlier studies.

Hence the object of the present invesigation is to study the modifications
m Kelly’s problem when his no-slip boundary conditions are replaced by the
first- order velocity-slip boundary conditions. In the case of subsonic flows of
relatively hot gases, the assumption of incompressibility is physically realizable.
The more generally accepted method of analysis for slip-flows is utilised here
viz., the continuum equations of motion are used throughout, together with
the first-order slip velocity boundary conditions at the plate. In section 2, the
problem is posed under suitable assumptions, Kelly’s method of solution is
closely followed and the problem is solved for suction velocity varying perio-
dically with time. The results have been compared with Kelly’s results wher-
ever necessary to bring out the effects of fluid rarefaction. In section 3, a com-
prehensive summary of results is presented.

2. Mathematical Analysis

Here a two-dimensional flow of an incompressible, viscous, rarefied gas
along an infinite wall is considered. The X-axis is taken along the wall in the
direction of flow and Y-axis is normal to the wall. Let ¥ and v be the velo-
city components along x and y directions respectively, # the time, p the pres-
sure, p the density and v the kinematic viscosity. Along an infinite wall, the
flow is independent of x. Then the Navier-Stokes equations governing the flow
are
ou N ou 1 op

(1) o2l P,
ot oy p Ox 0y
ov 19
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The boundary conditions are the first order velocity slip condition as given in
(2) (neglecting the thermal creep term)

u:2'—f1 Lail.
i oy
3) =L, 0_u at y=0
oy
and
4) u=U ) as y—»oo

Here L=p(m/(2p2))"? is the mean free path and is a constant for an incom-
pressible gas. Hence L, is also a constant. f; is the Maxwell’s reflection coef-
ficient and U (¢) is the velocity at a large distance from the plate. Then one
can show that

1 op oU
) -— L=
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Hence from (1) and (5), we get
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As the suction velocity is to be considered as a function of time, we assume
v(t) in the form of a periodic function given by

(7) ’U(t):‘vo [1 +8(eio>t ’4‘6_’.‘*”)].

Two different forms for free stream velocities are considered during the course
of discussion:

i) Constant free stream velocity.

ii) Oscillating free stream velocity.

In the latter case, it is assumed that both v (#) and U (¢) vary slowly.

2.1:  Suction varies periodically and the free stream velocity U (¢t) is constant.

We now assume, following the method of Kelly, that u(y, t) is of the form
(8) u(s =, )+ > u, (9) €™+ 3 u, () einot
n=1 n=1

where the symbol ~ denotes a complex. conjugate.

Substituting (7) and (8) in equations (6), (3) and (4), we obtain on
comparing non-harmonic and harmonic terms, the following set of equations
and the boundary conditions:

{ " 2
7)oii@-l‘vog(ilﬁ+d—lﬁ>=vd %
dy dy dy ay*
9
® y=0: uoleili‘?

y—>oo: uy—>U,

. du, (du0 duz) d?u,
iou +v,—+98 [~ +—=|=V
dy dy dy dy?
10 du
(10) y=0u =L~
dy

y—>o0: uy—0

dun—l + dun+1) —v dZ U,

. du,
nou, +v,—"+ 1,0 (
dy dy dy dy*

y=0 u,,let-i&’
dy

)

y—>oo: u,=0

We 2lso obtain a set of equations similar to (10) and (11) for u, and u,.

These equations are the same as those obtained by Kelly (11) but the
boundary condit'ons &re different. It is evident from equations in (9) that the
mean flow of a rarefied gas is :ffected by the oscillations through u; and u,
and also through all the higher harmonic terms. The distortion of the mean
velocity profile is due to the time-dependent suction which is zbsent in problems
considered by Stuart, Reddy, Messiha, Soundalgekar.
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Equations (9) and (11) reduce to the following nondimensional form:

(12) _&ﬁhﬁ%@H@%ﬁ%
|7)0| d‘f) |7)0l d"] d’l) dy)z
n=0: q)01h16i1;()0, >0, (D0—>1

1
in
(13) x@+ﬂéﬁ+%%@tué&ﬂ=wq
"lyy dn |yl \ dn dv dvp
n=0: (I)n:hlti,;on, n—>0, O, -0
"
where
(14) y:i-,)’ u,=U,®,, A= v
2] |22

oLy . .
and hl=|—°’——~l is the rarefaction parameter.
v

To solve the infinite set of equations in (12) and (13), we assume 8§<1,
and expand @’s in powers of 3. This assumption leads to the solution of
weakly coupled equations. Now let

(1) ®, (= 3 0, 0.

j=0
From (12) and (15), we obtain the following set of equations for @

PPy vy dDyy

dn>  |oo| d
do
(16) N=0: Qyp=h doo, N>, Dy—1
N

The solution for this system exists only if v,<C0 i.e. for suction at the wall.
Hence the solution of (16) is

an Bpy— 1 -

1+h,

For 8>1, there is a strong coupling because of the presence of blowing oc-
curring at certain times during the cycle of oscillations.

The equations for @, (v) are

2
d ®1°+d‘b1°—imm:0
Cdnr dy
(18)
do,,

, >0y O —>o0.

=0 Qp=hy p

This system leads to ®,,=0. We can also show that ¥, =0 for n>1. Also
®,, =0 implies that @y = 0.
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The equations for @, () are

2P —
+
(19) n N 1
dod

=0 (Dllzhld—nl—‘, n—>o0; @, —0.

This system leads to following solution for @, (x)

e—hrm

(20) Oy()= ey SIMVAM
A(1+hy)? A(1+h) (1 +hy)?
where

h=h,+ih, :%[1 + (1441217

2 2 2 2 2
The equations for @, (n)are

_l_+i[1-k(l+167\2)1/2]1/2+L‘[—1+(1+167\2)1/2J1/2

d* o, N do,, _h,sinh;m—h; cos by o—tr
dn? dn A +h)

n=0: (Dozzhldq)oz’ n—>o0; Oy, -0
dn

21

which leads to the following solution:

1 —h,
(22) Dy, (n) = e e |+
P N b (= hy
" e~hrn [h.cos hyn+ (h, — 1) sin iy

' AL +hy) B2+ (1 —h,)? '
* \\ ®,, and @, are plotted in Figs. 1 and 2 respect-
will ively for different values of A, A, and . From
\\\ Fig. 1, one can conclude that for the same 3,

an increase in A, leads to a decrease in @,;.
®,, also decreases with increasing A. The nature
of @, is completely modified in slip-flow regime
in the presence of time-dependent suction. Kelly
has observed that @, is completely negative for
moderately small values of A. But i1 slip-flow
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regime, for small values of A=0.5, I there is a sudden rise in ®,, near the
wall for all A,. It is negative only for very small A, and moderately large A.

The solution for the mean velocity profile to 0(3%) can now be expressed
in the following form:

e
23 u, A\, by, n)=U,|1~-
(23) o ( ) 0[ +h

+82Dg, (2, by, "])] .
1
As A —>o0, h, and h; still tend to (2/2)Y2 and Dy, decays as [1/2732(1 + h,)7].
Also for small A

2p—n

(24) s 7> 0.

2(1+ )
As in no-slip case, in slip-flow regime, the mean value of the wall shear stress

is not affected by terms of 0(3%) for Dy (0)=0. An increase in #, leads to a
decrease in the mean value of the wall shear stress.

2.2. Periodic variation of suction with a periodic free Stream velocity:

We now assume o (f) to be given by (7) and assume the velocity of the
external flow to oscillate with a frequency equal to that of v(f), viz » and
having an arbitrary phase angle «. Hence we assume

(25) U=U,[l+2ccos(wt+x)]
or

U-=U,ll +sle"°"+s~15—"°’]
where
(26) g, =cei*,

The relations (8) and (9) i.e. (12) still hold good and for n>>2, relation (11)
ie. (13) remains the same. Equations (10) in virtue of (25), (26) and (14)
become

d*®,

dn?

27 iz, —&—8 (&+@) = ike, +
dn dn  dy

with a corresponding equation for d~)1 (n). From (27) and (15), we obtain for

®,,(n) the following

. 2
(28) D, — dj)“’ ~ ine,+? ;’;o_
7
with boundary conditions
(29) =00y = 15{%0’ N0 D¢

We have again @,,==0 and hence equations (19) and (21) are respectively valid
for @, (n) and ®y,(n). Hence the terms of order 32 distorting the mean profiles
remain the same. In the case of periodic free stream, the terms of order 8§,
which are non-zero terms, are additional terms distorting the mean profile.

Now the solution of (28) subject to the conditions (27) is given by

—hn
@ B e
(30) o) sl(l 1+th)
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In case of constant free stream velocity, is was shown above that @,,(n)=0.
This is not true now as can be seen from (30). We now determine @, (v)
from the following equation:

0y, dDy _ (ch)m . dcﬁm)

dn? dn d, dn
31 :I(I)m:hld;bm, n—>o0, O, —0.

Y
We substitute for @,,(n) and its conjugate form (30) in (31) and obtain after
taking the real part,

aa,, +d(I)m __ 4 221,{1 _ (1 +hyh,) cos hyn —hyh; sin hﬁ]] o hrn
dv? dn (14 b,y + (hyh)?
(1 +hyh,) sinhpy -+ hyh; cos by o—trn
(1 + b + (hyh)?

(32) —2¢y

where
g =g, +igy.

Following Kelly, we now split ®,, into two components viz.,
(33) Doy =&, Dyy,1 +1; Py
Then @, is determined by

a4y PO 4Py 1[2 _2{(+hihy) coshyn—Ih, sin hin} "_hm]
dn? dy dy (1 -~k Y + (hyh)?
with 'f):():q)ol,l =l’l1 dq;(;]l’l > N>, q)OI,l —0

and @, , is given by

(35) @01‘2 N a'clig,~2 _ _“d_ [2 {(1 + h.h,) sin by + h,h; cos hn} e—hm]
dn*  dy dn (1+hh,)* + (hihy)?
Wlth 7] = 0 (DOI,Z = hl d(zm’z 5 7] — %, (I)OI,Z - 0
Yl

From (31), we can conclude that when the free stream velocity is either
in phase or directly out of phase with the suction, ¢, ®,, , is the solution and
when the free stream velocity is 90° out of phase with the suction velocity,
€, Dy, is the solution. Also in the no-slip case, Kelley has observed that

,(D01,2 ) = — 2Dy, (0).

This is not true in case of slip-flow regime, which is evident from equation (35).
Hence the solutions of the equations in (34) and (35) are now given by

2[X +hhy) (b, =1+ by (2 =2 = 1)} =2 k2 (0 (L= 2h) = D] _,
(L+A) [(1+hh)? -+ (1) [+ (1= h,)]

Dy, () =

(36)
_ 2[{h,— 1 +hy(h,> = h? —h,)} cos (hm) +h(h(1 — 2h,) — 1) sin (hm)] o—hr

(L +7.8,)2 + (A1) A2+ (1= A, )7
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2k {1 =+ b (L + b= h)} = by (L by hy) (L= b —h) = D))
(I+h) [ +hh)? + (AR +(1 =R, Y]

q)ol,z M=

(37
n 2[h; (hy (1 — b, — h) — 1) cos (ki) +{1 = h, + hh; (1 + h; — h,)} sin ()] e—hm

(A +hh)2+ AR+ (1 —h)]

The functions @, ,(n) and @, ,(n) are shown graphically in figures 3 and 4.
Kelly has observed that an increase in A leads to a decrease in @, ;, which
is also true in slip-flow regime. ®,,, increases near the wall with increasing A, .
®,,,, is shown in Fig. 4. An increase in A leads to a decrease in @, for A,
constant, but it decreases with increasing &, .

Fig. 3. ., ¥S_DISTANCE FROM THE wALL. _Fisd . dor,

The solution for the mean velocity can now be written in the form:

e "
(38) u, () =U, [1 - E_‘h‘ +8 (e, Py, +€1; P, 2) + 82(I)on
to order 92 '

According to Kelly, in no-slip case because @, ,(vn) is a multiple of
@y, (), the component @, ,(v) which is in phase or directly out of phase
with the suction velocity dominates at low frequencies. This is not the case in
the slip-flow regime. One can observe from Fig. 3 and Fig. 4 that the com-
ponent @, . (n) is more dominating than the component ®, () at low fre-
quency in slip flow regime. Also @, ,(n) is not zero ar the plate. Hence the
mean value of the wall shearing stress is affected by both the components
Gy, (), Dy, () in the slip-flow regime. To obtain the mean value of the
wall shearing stress, we have from (38),
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TW(f)u) _wUofof [ 1
Y\ /o v 1+h,

h (i 2h, =D+ 1) +(1=h)>+h?>(1 —h,) (h2—h?—h)
(T+h) [+ A, ) + (BT TR+ (1 =1, )

(39) +25 {slr

. hyh, }
T+ R) [ +hhY + (Y ]

which reduces to Kelly’s result (4.17) when A, is zero. Thus the mean value of
the wall shearing stress is completely modified in the slip-flow regime when
both the free stream velocity and the suction velocity oscillate with the same
frequency. It has been observed by Kelly that the wall shear stress is increa-
sed if the two oscillations are in phase and decreased if they are 180° out of
phase. This is because of the vanishing of the coefficient of ¢,; in no-slip case.
In the present case, the derivatives of @, , and @, , are different from unity
and zero respectively. Hence to study the effects of the term of 0(3) on the
wall shear stress, the numerical values of @'y |,_, and @', ,|,_, (prime deno-
tes differentiation with respect to w) are calculated for different values of A,
and A. They are entered in Table I. A close study of the table reveals that
®@'g1,1 lno increases with increasing A for the same value of the rarefaction para-
meter h; whereas for the same value of A, the frequency parameter, an increase
in A, leads to a decrease in @'y, |,_o. In the case of 'y, ,|,_,, for same A,,
it increases with increasing A, but for small values of A, say < 5, an increase
in h; leads to an increase in @y ,|,_, whereas for moderately large values
of A, it first increases and then decays as A, increases.

Values of d);)l’] \71:0

Table 1
/A 0.5 1 5 10 15
0.05 0.9008 0.8934 0.8568 0.8289 0.8078
0.1 0.8153 0.8020 0.7380 0.6915 0.6579
0.2 0.6762 0.6549 0.5589 0.4964 0.4551
0.3 0.5693 0.5434 0.4352 0.3717 0.3324
Values of (D;)I’z 7=0
0.05 0.0167 0.0262 0.0597 0.0804 0.0943
0.1 0.0287 0.0443 0.0938 0.1196 0.1347
0.2 0.0433 0.0649 0.1210 0.1412 0.1496
0.3 0.0500 0.0732 0.1230 0.1346 0.1368

3. Conclusions

When the first order slip boundary conditions are imposed, some interesting
features in the shape of the mean velocity profiles and the mean value of the
wall shearing stress are observed. They are summarised as follows:

() In case of constant free stream velocity, the mean velocity profile is
still not affected by terms of order 3. However, the function which modifies
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the shape of the mean velocity profile viz. @, (n), behaves in a quite different
way in slip flow regime. For very small A, ®,,(n) suddenly increases for all
values of h,, the rarefaction parameter. It is negative only for small 4, and
large A

(i) An increase in h; leads to a decrease in the mean value of the wall
shear stress, in case of constant free stream velocity.

(ii)) In the slip-flow regime, when the free stream velocity varies perio-
dically, the mean velocity profile is still affected by terms of order 3 and &2,
as in no-slip case. But the function ,,®, ,, which is the solution when the
free stream velocity is 90° out of phase with the suction, is completely different
from the one in no-slip case. Hence in the slip-flow regime, both these functions
are dominating in addition to ®,,. In the present case, @, , decays early for
small k, and large A, but for small XA, an increase in 4, leads to an increase
in @, , near the wall. Also the function @, , increases suddenly near the wall
when h; and A are both very small. It decreases with increasing A and A, .

(iv) The functions dominating the mean value of the wall shearing stress
are ®2)1,1{n=o and CD:)I,zL,:o, where prime denotes differentiation with respect to .
The former decreases with increasing A as well as #, whereas the latter increases
with increasing 4, when A is smail (<5) and for large 2, it increases first and
then decreases as A, increases.

(v) The rarefaction parameter h, involves |v,|, which is the mean suction
velocity. Hence the variation of this parameter does not correspond to only
the variation in the level of rarefaction, but also to the variation in the mean
suction velocity imposed at the plate.
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