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Abstract

The question of representation of a continuous and differentiable function
belonging to a certain class is examined and estimates are obtained for estab-
lishing the convergence of partial sums.

1. Representation of a function, belonging to a given class, in terms of
a Fourier series of polynomials is clearly a problem of cardinal significance in
analysis. Suetin [4] was able to obtain an important result in this direction by
using Timan’s theorem [7]. This was further generalized by Prasad [2,3] and
some others. In the present investigation we carry this generalization still fur-
ther and consider a function having p continuous derivatives on [—1, 1] such
that f® (x) € Lip p, (0O<<w<1) and present a few auxiliary results which, in
a straightforward way, yield estimates on various differences which are of prin-
cipal importance in resolving questions of convergence. In particular, we shall
restrict ourselves to representing functions in terms of Fourier series of ul-
traspherical polynomials.

2. Let ’
(2.1) Spa(®)=3 Ce P (%), a>—1
£—0

be the n™ partial of the Fourier—Jacobi Series of a function f(x) where

[Qk+20+ DT E+1D) Tk +2a+ 1)]V2
1

a+7
2 F'k+a+1)

(2.2) P (x) = P& (),

PP (x)=P (x) being the k* degree Jacobi polynomial with B=a

In [2] the first author has established the following:

Theorem 2.1. If f(x) has p continuous derivatives on[—1, 1], f® (x)
Lip g, 0O<u<1) and 0<a<1/2, then, for p+p>2a,
C/lnn

np+p.—2a ’

(2.3) [f(x) =Sy (x)] <

xe[-1,1]
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and
C,Inn

PP 2a+1

(1 =) P2 f(X) =Sy (x) | < xe[- L1}

In the present note we generalize Theorem 2.1 to the following:
Theorem 2.2. If f(x) has p continuous derivatives on [ — 1,1] and f (x) &
Lip g, (0<u<1) then

C1 Inn

2.5 1fP)-S0w] < irar 0220 p>2a (0<a<1/2),

C; Inn

p+p.—2 r—2a+l ?

2.6) (1-x) 12| fO (x)— ST w) | <

and

p=>2r, p>2a O<a<1/2)
Ne/2 C3 Inn
@7 (L= |f() =S, (| < 2500, 020, p=20  (0<a<1/2)
uniformly in [ —1,1].
For the sake of convenience we introduce the following notation:
PP ()=, ()
3. We recall the following well-known results which will be of frequent use.

From [1] pp 324, we have for y> —1 and B> —1,

3.1 —M+M<dnﬁ, d=a positive constant.
F'n+y+1)
From [5] we have for —1<{x<1 and O<a<1,
1—a
3.2 1-x2)2 | o, 4 (%) <-
(32) (A= 00 <5 =
3.3 2\1/2 =
. 1-x Wpa(X) | < —
(33) (1= | 0 (< o
and
(3.9 | @, (%) | <Cyn=
Using (2.2) and (3.1) — (3.4) we obtain for —1<x<1 and O<a<1,
_ e
3.5 (1 —=x¥)%2| 0, ,(x) | <C,n ,
1
_ —7‘{’&
3.6) (1=x)12| 0, ,(x) | <Csn ,
and
__|_a
3.7) | G (6] <Cy

Derivatives of ojm (x) satisfy the inequality

1
2rtat—
(3.8) i) | < Cyn , —l<x<l
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which is readily derived by using (3.7) and Markov’s inequality [1]. Furthermore,
making use of (3.8) and result (4.8) of [8], pp 38, we have for —1<x<l,

1
2r+oa—
(3.9) (1 =x)12| i) (x) | <Cyn
4. Some lemmas.

Lemma 4.1. For —1<x<1 and 0<a<1,

n

Z LD o (x) | dt<Can?r2 In n,
k=r

1
(4.1) f(l — 12y
4

(4.2) ( _x2)1/2f (1 -1 dt<C} n2re2a-11n p

-1

z O (1) 0% (%)

and

1
(4.3) (1 — x2)i2 [ (1 — 2 dt< C, m2*11n n.

S G (1) G0 (%)
k=0

Proof. We present the proof of (4.1) and remark that (4.2) and (4.3)
can be proved along the same lines. By A, (x) we designate the part of [—1,1]

on which |x-— 7] gi and by 3,(x) the remainder of the interval. We proceed
n

to compute now

o f(l—tz)a Z‘*’ka(t)w(')(x) dt = f+f=11+12.
Clearly - Ap(x¥)  8p(x)
h= f (12 Zwka(r) ofa ()| d
Ap (x)

< Z (1 =122 | 6, (1) || o0k (x) | dt
Ap (X)

and hence using (3.5) and (3.8) we have

4.5) I,<Cy, > k@raza gt
k=0

Ap (x)

gcu p2ri2a+l) f dt< C12 n2(r+a
An(x)

In order to estimate the integral I, over 8, (x) we recall the Christoffel formula [6].

(4.6) Zwka(z‘) e () =0, Onts () O ()= ;""“(x)"’”"“(’) (0<0,<1).
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On differentiating r times both the sides of (4.6)

4.7 z o (1) OTL () = O, {08 1,0 (X) @, (1) — - ;;)(') 2 (X) Oyt Q)]

o _lr—v ' n N nzxt (V) n+1,% t

Hence we have

(4.8) I,= f(l — 12y

3n(x)

Sf(l 12)e

8 (x)

2 0y (1) Oy (%) ] dt

w1 (X) 0,0 <t) O () 010 (1) | 4
—t

Z(—l)f {10 () @ (1) = 01 (¥) D10 (D) |
V! (x t)r—v+1

=u, +u,.

+ f tZ)tx
3 (x)

1
X—t]>—
n

we get

(4.9) Uy = f (1—12)e

8n (x)

mn+l 0 (X) wn o (t) O)(r) (x) (")n+1 o (t)
x—t

2r+<:t+l . _
g C13 n ? f(l - t2)a/2 l: | (")n,a (t) | + ’ O‘)n+1,tx (t) l ]

3p(x)
dt
|x—1]

dt )
1]

<Cyn*+2*Inn, x&[-1,11

< C14 n2 r+2o

3p(x)

Next, using (3.6) and (3.8) we have for u,

"= 1) 7 PHOS 1 (%) G (1) = 00 (3) 01, (8) |
(4100 = f = 2, ey pas | dt

8 (%)

fﬂ fayuiz ’g r! {lwﬁ“llu(xn|wm(t)|+1w(“’(x)|)6,,+l,u(t)|}dt

J x—1 |r—v+1
8p (x)

r—1 nevize dt
<Cis 2 f |x— |-

=0 V!
8p(n)

S-_'C17n2r+2a—1’ x & [_ 1’1]'
Thus, from (4.4), (4.5) (4.3), (4.9) and (4.10) the lemma is established.
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Lemma 4.2. For —1<x<1 and 0<a<1, we have
! ptu

4.11) f(l—ﬂ) * a{l z O (1) 0F% (X)
k=r

—1

dt<Cyn***2*Inn,

O (1) OFX(X)| dt< Cpom2729—1 In

1
+a
4.12) (1~x2)1/2f(1—t2) 2

&
gM=

and
ptu

"—+“ n _ _
4.13)  (1—x2)pn f (1-1) S G (1) G (%) | AL Crp 2% In 1.
k=0

Proof: This follows immediately from lemma 4.1.

Lemma 4.3. Let f@(x) ¢ Lip u, (0<u<1). Then there exists a poly-
nomial Q,(x) of degree at most n such that

q+_u.
lf(x)—Q,,(x)lsi(a—xZ) 2y )
nate

nq‘H‘-

and
qtu—r

O ()~ Q"’(x>l< ((1 Y- )

natu—r

uniformly in [— 1,11 and r=1,2, ..., 4.
This was already demonstrated in [3].

5. Proof of Theorem 2.2. It suffices to prove (2.5) only for the
proof of (2.6) follows similar reasoning while that of (2.7) is only a minor
variant of the one already contained in [2]. Obviously then,

O () = S5 (¥) | = | S () — 0% (%) + 0 (%) = ST (%) |

<|fO @) -0 %) |+ f (1129, (1) o ()| dt

-1
Using lemma 4.3, we have

ptu—r

row-saw|< 2o * )

petu—T

1

C 3 (1 g
+—ﬂf[(1—t2) G )1
e+ nete )

n

> g (1) 0% ()

k=r

dt

1 et

—ta
S&-i-&f(l—tz) 2

petu—r nete
—1

C21 _ 20(
2(o+u-)f(1 t)

S G (1) S () ; dt

k=r

z W () 0y (x) |dt

T*
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Hence, using estimates (4.1) and (4.11) we finally obtain

_EZL, N C24 n2r+2rx ln n L C25 n2r+2cx In n

7iasd et n2 P+

|f® (x) =S (x) | <

Inn
S C26m, 922 r, ‘L>2 o

This completes the proof of (2.5) whence the basic theorem of this investiga-
tion is established.
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