ON FIXED POINTS

S. P. Singh*

(Received July 9, 1969)

Let (X, d) be a metric space. A mapping $T: X \to X$ is called a contraction mapping if there is a real number k, 0 < k < 1, such that

(A)
$$d(Tx, Ty) \leqslant kd(x, y)$$

for x, y in X.

The well-known Banach Contraction Principle states that a contraction mapping of a complete metric space X into itself has a unique fixed point. This theorem has been extensively used in the existence theorems of differential and integral equations. Recently Kannan [2] proved the following result.

Theorem: If T is a mapping of a complete metric space X into itself such that

(B)
$$d(Tx, Ty) \leq \alpha \left\{ d(x, Tx) + d(y, Ty) \right\}$$

for x, y in X and $0 < \alpha < \frac{1}{2}$, then T has a unique fixed point in X.

The aim of this paper is to prove some related theorems on fixed points.

Kannan [2] has shown that none of conditions (A) and (B) imply the other.

We prove the following proposition:

Suppose $k < \frac{1}{3}$. Then (A) implies (B).

Proof: $d(Tx, Ty) \leq kd(Tx, y)$

$$\leq k \left[d(x, Tx) + d(Tx, Ty) + d(Ty, y)\right].$$

This implies that

$$d(Tx, Ty) \le \frac{k}{1-k} [d(x, Tx) + d(y, Ty)].$$

Now, $k < \frac{1}{3}$ implies $\alpha = \frac{k}{1-k} < \frac{1}{2}$, so that (B) is satisfied.

^{*} This work was partially supported by NRC — grant number A-3097.

Theorem 1: Let X be a metric space with metrics d and δ such that $d(x, y) \le \delta(x, y)$ for each pair x, y in X. Let X be complete with respect to d and let $T: X \to X$ be function in (X, d) and

$$\delta(Tx, Ty) \leq \alpha \{\delta(x, Tx) + \delta(y, Ty)\}$$

for x, y in X and $0 < \alpha < \frac{1}{2}$. Then there exists a unique fixed point of T in X.

Proof: Let $x_0 \in X$ be an arbitrary point and consider the sequence of successive approximations

$$x_n = Tx_{n-1}, \qquad n = 1, 2, \dots$$

Then $\{x_n\}$ is a Cauchy sequence with respect to δ . In fact,

$$\delta(T^n x, T^{n+1} x) \leq \left(\frac{\alpha}{1-\alpha}\right)^n \delta(x_1, x_0)$$

since $\delta(Tx, Ty) \leq \alpha \{\delta(x, Tx) + \delta(y, Ty)\}.$

Thus for $0 < \alpha < \frac{1}{2}$, $\delta(T^n x, T^{n+1} x) \to 0$ as $n \to \infty$. $\{x_n\}$ is a Cauchy sequence with respect to δ implies it is a Cauchy sequence with respect to d for

$$d(x, y) \le \delta(x, y)$$
 for x, y in X .

Since X is complete with respect to d, therefore, $\{x_n\}$ converges to x in X. Since all iterates converge to the same point, as can be seen in the following way- If $T^n x_0' \longrightarrow x_1$, $T^n x_0'' \longrightarrow x_2$, then

$$d(x_{1}, x_{2}) \leq d(x_{1}, T^{n}x_{0}') + d(T^{n}x_{0}', T^{n}x_{0}'') + d(T^{n}x_{0}'', x_{2})$$

$$\leq d(x_{1}, T^{n}x_{0}') + \alpha \left\{ d(T^{n-1}x_{0}', T^{n}x_{0}') + d(T^{n-1}x_{0}'', T^{n}x_{0}'') \right\} + d(T^{n}x_{0}'', x_{2})$$

$$\longrightarrow 0, \text{ as } n \longrightarrow \infty.$$

So, let x be such a unique point. Then

$$d\left(Tx,\,T^{n+1}\,x\right)\leqslant\alpha\left\{d\left(x,\,T^{n}\,x\right)+d\left(T^{n}\,x,\,T^{n+1}\,x\right)\right\}\longrightarrow0.$$

This implies that $T^{n+1}x \longrightarrow Tx$ and so Tx = x.

A similar theorem for contraction mapping in a metric space has been given by Maia [3].

Remark: In case T does not satisfy conditions of Theorem 1, but T^p (p is a positive integer) does satisfy, then T has a unique fixed point.

Proof: By Theorem 1, T^p has a unique fixed point say x_0 . Then

$$T^p x_0 = x_0.$$

Now, $Tx_0 = Tx^{p+1}x_0 = T^p(Tx_0)$.

Thus Tx_0 is a fixed point of T^p . But T^p has a unique fixed point x_0 therefore,

$$Tx_0 = x_0$$
.

Hence T has a unique fixed point.

Theorem 2: If (1) $\{T_i\}$ is a sequence of mapping of X into itself with

$$d(T_i x, T_i y) \le \alpha \{d(x, T_i x) + d(y, T_i y)\}, \quad (x, y \text{ in } X)$$

for each $i=1, 2, \ldots$ and each T_i has a fixed point a_i ; and (2) $\{T_i\}$ converges pointwise to a mapping $T: X \to X$ with a fixed point a_i ; then the sequence $\{a_n\}$ of fixed points converges to a where a is a fixed point of T. Also T has only one fixed point.

Proof: Since $\{T_i\}$ converges pointwise to T, given $\varepsilon > 0$ there exists a positive integer N such that n > N implies

$$d(Ta, T_n a) < \frac{\varepsilon}{1+\alpha}$$
.

Thus for $n \ge N$,

$$d(a, a_n) = d(Ta, T_n a_n)$$

$$\leq d(Ta, T_n a) + d(T_n a, T_n a_n)$$

$$\leq \frac{\varepsilon}{1 + \alpha} + \alpha [d(a, T_n a) + d(a_n, T_n a_n)].$$

Since a_n is a fixed point of T_n , we get

$$d(a, a_n) < \frac{\varepsilon}{1+\alpha} + \alpha d(a, T_n a)$$

$$\leq \frac{\varepsilon}{1+\alpha} + \alpha [d(a, Ta) + d(Ta, T_n a)].$$

Again, since a is a fixed point of T, we have

$$d(a, a_n) \leq \frac{\varepsilon}{1+\alpha} + \alpha d(Ta, T_n a)$$

$$\leq \frac{\varepsilon}{1+\alpha} + \frac{\alpha \varepsilon}{1+\alpha}$$

 $= \varepsilon$.

So that $\lim a_n = a$.

Suppose b is another fixed point of T. Then by the above argument $\lim_{n\to\infty}a_n=b$. Hence, T has a unique fixed point.

Definition: A mapping $T: X \to X$ is called a non-expansive mapping if $d(Tx, Ty) \le d(x, y)$ for all x, y in X. In particular, every contractive mapping $T: X \to X$ is non-expansive.

Cheney and Goldstein [1] proved the following theorem:

Let T be a map of a metric space X into itself such that

$$(1) d(Tx, Ty) \leqslant d(x, y),$$

(2) if
$$x \neq Tx$$
, then $d(Tx, T^2x) < d(x, Tx)$,

(3) for some $x_0 \in X$, the sequence $\{T^n x_0\}$ has a subsequence $\{T^{n_i} x_0\}$ converging to x. Then the sequence $T^n x_0$ converges to x and x is a fixed point.

We prove the following result.

Theorem 3: Let X be a metric space and T be a continuous function of X into itself. Suppose

- (1) $d(Tx,Ty) \le d(x,y)$, x and y belonging to an everywhere dense subset M of X,
- (2) if $x \neq Tx$, then $d(Tx, T^2x) < d(x, Tx)$.
- (3) for some $x_0 \in X$, the sequence $\{T^n x_0\}$ has a convergent sequence $\{T^n x_0\}$ converging to x, then the sequence $\{T^n x_0\}$ converges to x and x is a fixed point.

Proof: The proof will follow from the above Theorem if we could show that (1) holds for all x, y in X.

Let $x, y \in X$, if $x \in M$ and $y \in X - M$, let $\{x_n\}$ be a sequence in M such that $x_n \to y$. Then

$$d(Tx, Ty) \leqslant d(Tx, Tx_n) + d(Tx_n, Ty)$$

$$\leqslant d(x, x_n) + dTx_n, Ty).$$

Letting $n \rightarrow \infty$, we get

$$d(Tx, Ty) \leqslant d(x, y)$$
.

Now, consider the case when $x \in X-M$ and $y \in X-M$. Let $\{x_n\}$ be a sequence in M such that $x_n \to y$.

Then

$$d(Tx, Ty) \leq d(Tx, Tx_n) + d(Tx_n, Ty)$$

$$\leq d(x, x_n) + d(Tx_n, Ty)$$

form the preceding case.

Taking limit as $n \to \infty$, we get

$$d(Tx, Ty) \leq d(x, y)$$
.

Thus the theorem follows.

Remark: The referee suggested a more general result than the Theorem 2. in the following way:

Consider the mapping $T: X \longrightarrow X$ such that

$$d(Tx, Ty) \leq pd(x, Tx) + qd(y, Ty), \quad 0 \leq p + q < 1.$$

The author wishes to express his sincere thanks to the referee for his suggestions regarding the improvement of the paper.

REFERENCES

[1] Cheney E. W. and Goldstein, A. A., Proximity maps for convex sets Proc. Amer. Math. Soc. 6 Vol. 10 (1959) 448-450.

[2] Kannan, R. Some results on fixed points II, Amer. Math. Monthly 76 (1969) 405-408.

[3] Maia M. G., Un'osservazione sulle contrazioni metriche Rend. Sem. Mat. Univ Padova, Vol. XL, (1968) 139-143.

Memorial University St. John's, Newfoundland