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We consider finite, undirected graphs without loops or multiple edges.

1. A tree is an acyclic connected graph. It is known that a tree with n ver-
tices contains n—1 edges.

This paper deals with determining the number of trees which are, as
spanning subgraphs, contained in a given graph. Some of the trees which are
counted in this number are mutually isomorphic. The number of trees of the
graph G we denote by D (G). Note that D(G) =0 if G is an unconnected graph.

A classical result in this area of graph theory was given by A. Cayley
[1], who proved that for a complete graph G with n vertices the formula

) D (G) ==

holds. Later on several proofs of this formula appeared. The survey of their
different proofs is given in [2]. A survey of results which are related to
determination of the number of trees in incomplete graphs is given, for example,
in [3], [5] and [6].

The number of trees is of interest in several applications. A. K Kel’'mans,
for example, lists in [3], as an illustration of this fact, applications in the
following areas: analysis of electrical networks, determination of the probability
of connectedness of a telecommunicating system and analysis of maser’s effects.

2. For the determination of the number of trees of a graph there is a
matrix technique.

Let G have vertices X,,..., x, whose degrees are d,,..., d, respectively.

Let A:Haij H'f be the adjacency matrix and D:Hdﬁ H'f the matrix of vertex
degrees of the graph G. In the usual manner, for 4 we have a;=1 if x, and
x; are adjacent and a;=0 if x, and x; are not adjacent. Further, we have
dy=d; 8, where 3; denotes the Kronecker’s d-symbol.

It is known that the number of trees is equal to the minor of arbitrary
diagonal element of the matrix D—A. This result have been obtained inde-
pendently by G. Kirchhoff [7], H. M. Trent [8] and some other authors. One

proof of this statement can be found in [9].

Using described technique, the problem can be solved, in general case,
only in principle, since by effective solving one finds difficulties while deve-
loping the determinant by use of which the number of trees is determined.
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There are two modifications of this matrix method which, as we shall
see, have the importance of independent methods.

1° In [3] for the graph G with n vertices the following function is
introduced:

) B{(G):-i—det(D—AHI).

Note that for every graph D—4 is a singular matrix and that B3 (G) is a poly-
nomial. It can easily be seen that the formula

3) D(G)=%Bs ©)

holds.

2° It is noticed in [9] that the number D (G) can be expressed, for regular
graphs, by use of the characteristical polynomial P, (A\)=det(AI—A) of the
graph G. We have

@) D(G):-—’}PG' .

where r denotes the index (degree) of the regular graph G. ‘

Formulas (3) and (4) are simple consequences of the mentioned theorem
of Kirchhoff — Trent. The importarnce of these formulas lies in the fect, that
the functions Bj (G) and P (X) can be determined for some graphs by the use
of the same functions for some simpler graphs.

Possibilities given by (3) are shortly described in [3].

In 4, using the formula (4), we have determined the number of trees in
some regular graphs. Part 4. represents the main part of this paper.

3. The direct sum Gﬁ.—G2 of graphs G, and G, is the graph which
contains, as components of connectivity, all the components of the graphs G,
and G,.

The complete product G,y G, of graphs G, and G, is obtained from the
graph G,+G,, if each of the vertices of G, is joined by one edge with each
of the vertices of G,.

This type of the sum and product was considered in [10]. According to
this paper, a graph is called elementary if it is connected and if it is y-pri-
mitive (i.e. if it cannot be represented as y-product of two graphs).

The following formulas are deduced in [3]:

®) B(G) = (— )" B_{s1m) (G),
(6) B"™(G, + Gy) = 1By (G)) B3 (Gy),
(N B (G,vG2)=(+n+n) By, (G) B, (Gy),

where G denotes the complemert of the graph G.

Using formulas (5) — (7) it is possible to determine the furctions
B3 (G) for all the graphs if these furctions are known for the elemert.ry graphs.

Since the quantity D (G) can be simply determined on the basis of Bj (G),the
same statement holds also for D (G).
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Unfortunately, according to [11], p. 508, the class of elementary graphs
is very: large. Nevertheless, many graphs can be represented by the use of the
operations + and y, starting from a very narrow class of elementary graphs.

In [4] the function B; (G) is determined if elementary graph G represents:

a) graph containing only one isolated vertex, b) cycle of length m, ¢) path of
length s.
' On the basis of these three results only it is possible to determine by
the use of formulas (5) — (7) the functions B; (G), and in this way also the
number of trees, for several kinds of graphs which are partially treated by a
number of authors. So it is, for example, a routine job to determine D (G)
if the complement G of G contains, as the components, isolated vertices,
complete graphs, bicomplete graphs, paths and cycles.

In that way, the method with the function By (G) gives all the results,
related to the number of trees in several graphs, which are described in papers
[5] and [6], i.e. almost all the results which are known in this area.

4. In the same way as the function By G) can be expressed using the
same function of elementary graphs, so the function P, (X) for some graphs G
can be determined by characteristical polynomials of some simpler graphs. In
this case the terms ,,simple”“ and ,,compound*“ graph are taken in relation to
some operations on graphs which are not identical with those described in 3.

We shall consider n-ary operations on graphs which have been introduced
in [12] and [13]. These are the incomplete extended p-sum (shortly: NEPS,
according to Serbocroat: nepotpuna prosirena p-suma) of graphs and the Boolean
function of graphs. We give for the NEPS the definition which is equivalent
to one from [12] and which is mentioned in [14].

Let B be a set of n-tuples (8,,..., B,) of symbols 0 and 1 not containing
n-tuple (0,..., 0).

Definition 1. NEPS g(G,,..., G,) of the gwaphs G,,..., G, with
the basis B is the graph, whose set of vertices is equal to the Cartesian pro-
duct of the sets of vertices of the graphs G,..., G, and in which two vertices
(%45 --.» x,) and (y,,..., »,) are adjacent if and only if there is a n-tuple
B,, ..., B, in B, such that x,=y, holds exactly when $,=0 and x, is adjacent
to y; in G, exactly when §,=1.

i

Definition 2. Let G,=(X,;, Up) (i=1, ..., n) be given graphs, where
X, and U, denote corresponding sets of vertices and of edges. If f(p,, ..., p,)
is an arbitrary Boolean function (f:{0,1}»—{0,1}), the Boolean function
G=f(G,,...,G,) of the graphs G,,..., G, is the graph G=(X, U) where
X=X,x---xX, and where U is defined in the following way. For arbitrary
two vertices (x,,...,x, and (»,,...,»,) from G the Boolean variables
Pys ..., D, are defined, where, for every i, p,=1 if and only if x; is adjacent
to y, in G,;. The vertices (x;,...,x,) and (y,...,»,) are adjacent in G if
and only if, for every i, x;#y; and f(p,, ..., p,)=1.

The set of a-tuples, for which the Boolean function f(p, ..., p,) takes
the value 1, we denote by F. We utilise also the abbreviation B=(B,;, ..., B,)-

The introduced operations are very general. Varying the sets B and F
one obtains several n-ary operations. Some of those special cases represent
the operations on graphs which are known in literature.

For the NEPS we have the following theorem [14]:
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Theorem 1. The NEPS with the basis B of the graphs G,, ..., G,,
whose spectrums are determined by {Mf [i;=1,...,m} (j=1,...,n), has the

spectrum {A;, =1, ..., m;, j=1, ..., n}, where

B8 8
Ail;-v-,in= z )‘11'1 o ')\nin "
BeB

.....

The corresponding theorem for the Boolean function of graphs is proved
in [13]. If the spectrum of G, contains the numbers A, (G=1,..., m), the

numbers from the spectrum of 5] will be denoted by )Tnj. If G, is a regular
graph and if the sequence A, ..., 7\]mj is monotone and nonincreasing, it can

be taken that the relations: 5\}1 =m—1—2%,, _)\jij =—1—hu, (5>1) hold, which
is proved in [15]. We also use the convention )\jtj[e'j] =My, for B;=1 and Mjmj] =7\ﬂ!
for B;=0.

Theorem 2. If G,,...,G, are regular graphs, the spectrum of the
graph G=f(G,, ..., G,) is the set {\;, .. ., |5;=1,...,m, j=1,...,n}, where

.....

Formula (4) holds, as it was mentioned, if G is a regular graph. Thus,
for the application of the formula (4) the fact, whether or not the NEPS or
the Boolean function or regular graphs is a regular graph, is essential. The
answer is positive and this fact can be easily deduced on the basis of the
definition of the mentioned operations. An algebraic proof for the Boolean
function, which can be extended to the NEPS, is given in [14].

We shall determine the number of trees for some classes of graphs,
which appear as results of application of the NEPS and of the Boolean func-
tion on regular graphs. Since Theorems 1 and 2 give spectrums of graphs,
wa shall modify formula (4) in the following way:

Theorem 3. If {A\=r, A, ..., A,} is the spectrum of the regular graph
G of degree r, the following formula holds:

1 m
8 S —2).
(8) D(G) - i|=2| (r—2)

We describe in more detail some special cases of the introduced ope-
rations.

Consider first the sum and product of graphs. These binary operations
are of the type of NEPS. For the sum we have B={(0, 1), (I, 0)} and for
the product B={(1, 1)}. Let G,=(X,, U), G,=(X,, U,), G,+G,=(X, U) and
G, xG,=(X, V). According to the definition we have X=X, x X,. Let (x;, x,) &
& X, (y;> y,)EX. For the sum the vertices (x;, x,) and (y,, ¥,) are adjacent if and
only if either x, =y, and (x,, y,)EU, or (x,, y,)EU, and x,=y,. For the product
the mentioned vertices are adjacent if and only if (x,, y)&U, and (x,, y,)EU,.

The strong product of graphs is the NEPS with the basis containing all
the n-tuples except n-tuple (0, ..., 0).

Now we determine the number of trees in several regular graphs:

4.1. Graph of the k-dimesional lattice. The graph G of the k-dimensional

lattice has, as the vertices, all the points with integer-coordinates from a cube
of the k-dimensional Euclidean space, where two vertices are adjacent if and
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only if the corresponding points differ in exactly one coordinate. This graph
can be represented as the sum of k complete graphs with n vertices. It is
known that the spectrum of a complete graph with n vertices contains the
number n1—1 as well as n—1 numbers equal to —1 (see, for example, [15]).
According to Theorem 1, th: spectrum of the graph G,+ - - - + G, contains
all the numbers of the form Ar;+ -+« + %, Using mathematical induction on

k, it can easily be proved that the spectrum of the graph G contains the
numbers A =n(k—i)—k, i=0,1,..., k, with multiplicities pi=<k‘ ) (n—1).
i

According to (8) we have
k k e 1)}
D(G)=n"k"k_1 I_I i( i )( H .
i=1

4.2. Graph of the prism. Graph G of the prism is the graph whose
vertices and edges correspond to the vertices and edges of the prism. Let the
basis of the prism be a n-gon. Graph G can be represented as the sum of a
cycle of length n and a complete graph K, with two vertices. The cycle. of

length 7 contains in the spectrum numbers 2cos2—ﬂi (=0,1,...,n—1), and .
n

the spectrum of K, is equal to {—1, 1}. Thus, in the spectrum of G we find

the numbers 2cosz—§i+l, ZCosg—T—ti——l, i=0,1,...,n—1, and we have

n n
1 [ 27 \2=! 2n
D(G)y=— 2—2cos—1i 4—2cos—1
( ) n[I;I( n )]1130< n )
8n_1 n—1

H sm2 <1+251n2 l)
n

4.3. Square lattice on the torus. Consider a circle torus. The CIrcle, which
lies on the torus and whose plane is normal on the axis of the torus, is called
the horizontal circle. Vertical circle is obtained when the torus is cut by a
semi-plane which starts from the axis of the torus. If we have some horizontal
and some vertical circles on the torus, we obtain 'a square lattice. The graph
G of the square lattice has, as vertices, intersections of horizontal and vertical
circles. Adjacent are those vertices which are immediately joined by the arc
of one of the circles which lie on the torus.

The graph G can be represented as the sum of two cycles. Let those be
cycles of length m and n (m horizontal and n vertical circles). According to
the previous statements one obtains

T

4mn 1n

D(G)«;1 (4—2 cos 2T i cosz—“j)

n m

- QTJ?

il

0

(sm2— i+sin? —j) , N0, 0).
m

)

If we consider, instecd of the sum, the strong product of the cycles, we
obtain the graph which corresponds to the square lattice on the torus in
which every .,,square also has the ,diagonals“ constructed. On the basis of
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Theorem 1, the strong product of the graphs G, and G, contains in the
spectrum all the numbers of the form A;;+22;,+ A1y 22i,. Thus, for the
described modification of the square lattice on the torus we have

1 n=tm—1 2n 2m 27 27
D(G)y=— 8§— 2cos—z——200s— —4cos———zcos——
@ = LT (3200 Fi2ens s ")

2mn—-1 n—1m—1 (

= ITTI

2
4—cos 2 i—cos 2—th—2 cos % i cos 2_7':},), (i, H#(0, 0).
mn ;o j=0 n n m

m

4.4. A graph of the cyclic structure. Let the graph G has the following
structure. The set of the vertices of G is partitioned in m (m>3) subsets
S, ..., 8, each containing n vertices. For every i=2, ..., m—1 every vertex
from S; is adjacent to every vertex from S, , and to every vertex from S,,.
Besides this, adjacent is every vertex from S, to every vertex from S,,. Other
pairs of vertices are not adjacent.

G is representable as the product of a cycle with m vertices and of a
complete graph with n vertices and with one loop added to each vertex. The

first graph has the spectrum [2 cosz—ni i=0,1,..., m—l]; for the second,
m

the spectrum contains the number n as well as n—1 numbers equal to 0.
G has mn vertices and is of degree 2n, so that we have

1 m—1 m—1
D(G)=l-n;|:n (2n——2ncos;z)]n (2 n—0)n-1

i=1
2mn+m—2 ymn—2 m—1 . T
- H sin2— .
m i=1 m

4.5. The graph of the diagonals in space of a prism. Finally consider the
graph G which has, as vertices, vertices of a n-sided prism and as edges all
the diagonals in space of the prism. G can be represented as exclusive disjunction
of the cycle G, of length #n and of the complete graph G, with two vertices.

For the exlusive disjunction we have F={(1, 0), (0, 1)} and its spectrum
contains, according to Theorem 2, all the numbers of the form x,,jz,zﬂ,,, A2i,e

The spectrum of G, is {—I, 1} and for G we have {0 0}. Thus, the

spectrum of G contains 2n numbers Ay, ..., Ajp> —Ays -+ —A,- According
to what has been said before, the comp]ement of a cycle contains in the

spectrum the numbers n—3 and _1_20052_7:i (i=1,...,n—1). So we have
n

-7 n—1
D(G)= n—3 (n—4—200s2—7ti) (n——2+2cos%lr—i>.
n =1 n n

5. The characteristical polynomial, and the spectrum, of a graph can be
defined respectively as the characteristical polynomial, and the spectrum, of
some square matrix which is in a certain way associated to the graph. The
spectral method in the theory of graphs is the set of procedures for obtaining
and proving statements about the graph structure, which use, in their essential
points, the characteristical polynomials, or the spectra of graphs.
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In 3. and 4. two methods for determining the number of trees in graphs
were described. Both methods are spectrzl. As it has been said, by the use of
these methods almost all the known and some other results in considered area
can be obtained. The spectral method, therefore, can be considered as a very
efficient one in the considered field of the graph theory.
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