PUBLICATION DE L’INSTITUT MATHEMATIQUE
Nouvelle série, tome 11 (25), pp. 123—134

TOPOLOGIZING THE HYPERSETSV
M. M. Marjanovié

(Communicated March 12, 1971)
Introduction

In this paper we investigate some topologies on closed subsets of a to-
pological space. In introducing a topology, we use a family of subsets that we
call a topologizing system (and have it denoted by -4), resuming so a point of
view that, in dealing with hyperspaces, a topologizing system is what matters,
not the family of closed subsets. So we try to develop further an idea initia-
ted in [7]

In section 1., we consider several mappings between the families of sets
and state some basic facts without proofs (which, for instance, can be found
in [6] and [8]). We only prove 1.5 and 1.6.

In section 2., we follow the construction of the space x (X) (this notation
is after [10]), being introduced first by A. Tychonoff [10] and studied by
V. 1. Ponomarov in [10]. Varying a topologizing system, the spaces x (X, A)
have all essential properties of x (X) as they were established in [10] or, in
the case of such a minimal system, in [3] (simple Funktionentopologie). That
this generality is not only formal can be seen from 2.10, 2.11 and 2.13.

In section 3, we establish some of the properties of the spaces AX, A
which, in the case when the topologizing system is the family of all open sets
of X, are reduced to A(X) (this notation is again after [10]). Giving first
a A-characterization of the families of finite character, a result (3.6) is proved
which formaly extends the Tukey lemma. A realization of the topological
product as a subspace of a A(X, A4), with the “small“ open sets in 4, is
also given.

In the last section 4, we establish a set theoretic formula and prove a
proposition in connection with it (4.5), which is logically equivalent to the
Alexander lemma. For X compact A(X) is compact what is implied by this

proposition and, in a set theoretical form, that is what the proposition actu-
ally means.

1. Some mappings of families of sets.

Let S be the category of all sets and all mappings. Define the P-functor P:
& —J in the following way: For an object X, P(X) is the partitive set
of X and for a morphism f:X—Y in Slet P(f):P(X) — P (Y) be such that
for ACP(X),

P(f)(A)={ycY.y=f(x), for some xS 4}

1 1 wish to express my gratitude to professor Dragisa Ivanovié. Without his kind
help the work on this paper would have been impossible.
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Then, P is a covariant functor, what can be represented by the following
diagram
X P(X)

Y ——— P(Y) ) P(sof
/ -
g M
Z

P(Z)

and P(J) is a subcategory of S (though not a full subcategory).

, For Xcd, let P2(X)=P (P (X)) and P?(X) is called the second partitive

set of X. The elements of P(X) will be denoted by 4, B, ... F, ... and called
subsets of X and those of P2(X) by AW, BM, FO__ called families of
subsets of X.

A union mapping u.P?(X)— P(X) is defined so that
u(AM)={x:x< A4, for some A< AL},
We will also use the symbol |AM| to denote u(AD). The set u(AD) is called
the body of the family A®. Let i:X — P(X) be the mapping i(x)={x}.
The set P (X) is partially ordered by inclusion and we use the same symbol
< to denote the order relation in P (X) and P?(X) what is justified by
1.1. If A® CBO, then u(AV) C (BW).

The object (and subobjects) of P(S) and P2(<S) have “more structure*
what allows one to define some natural mappings and relations which are not
definable in .

The complement mapping C:P(X)— P (X) is defined by C(A) =X\ A4,
and it is evident that CoC=id. Two mappings C:P2(X)— P2(X) and
P(C):P*(X)—> P?(X) are distinct and should not be confused. If 4C X,
write (A) to denote P (A4). So

(A ={FEP(X): FC A).

is a mapping of P(X) into P2(X). The following properties of the map-
ping (-} are easily established.

12. I) ACB > (4)C(B), (II) {(ANB)={4)N(B),
() A#£B = (A>#(B).

Since the mapping C is an epimorphism there is a unique mapping »-{
such that the following diagram commutes

P(X) c P(X)
<O ><
PXX) = PA(X)

Now we have
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13. () (-)=Co):{oC, (AI) }-(=Co(:)eC
(IID) YA(={FEP(X):FNA#2}, (IV) Y4{>{4).
Using 1.2 and applying 1.3 (II), we also have
14. (1) ACB = YACCHB, (ID) YAUB =AU B,
(D) A#B = YA A)B.

To denote the set of all singletons {{x}:x& X}, we will use X and for
the set X taken as an element of P(X), the symbol {X}: Consider two map-
pings ®,:P(X)—>P(Y), i=1, 2. We will write ®, C D, if ®, (A) C D@, (4) for
each AEP (X). For a mapping ®:P(X)—>P(Y), let f=®|X:X—P(X) and

let f~ be the mapping defined by the diagram

px__PF) | PYY)
N u
~. S
P(Y)

The mapping ® is monotone if ACB in P(X) implies ® (4) C ®(B) in P(Y).
Now we can prove.

1.5. If the mapping ®:P(X)—> P (Y) is monotone then fg@.

Proof. Let AP (X) and YEf(A)=uP(f)(4). Then ycP(f)(x)=
= ® (x), for some xZ=A. Since {x} CA4 and ® is monotone, we have @ (x)C

C®(4) and so yE® (4). Thus f(4) C @ (4).
1.6. Let XC AV C P(X) and YC BO C P (Y) and let
@: AV > B

be 1—1 and onto and let both ® and ®' be monotone. Then fiX>Yis1—1
and onto and f=.

Proof. Since YC BW, for y&Y there is an x& X such that y&® (x).
From {y}C ® (X), it follows that ®~!(y) C {x} what implies ®'(y)=x. Be-
ing ® 1—1 we have ®(x)=y. Hence f=®{X:X—Y is 1—1 and onto.
Since ®-! is monotone, according to 1.5, for BE B we have

f1B P (B)-4
or being f monotone,
F(f~(B)=B=(4) Cf(4).

So q:g}‘ and fgcb imply (I)=f.
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2. The space x (X, A).

Let X be a topological Tj-space and 4 a family of subsets of X con-
taining the family -4 having for its members all complements of the singletons

{IN\{x}:x& X} as well as X itself. The family -4 will be called the topologi-
zing system. To the pair (X, -4) we correspond the topological space x (X, A)
having for its elements all closed subsets of X (the empty set @ included), and
for the open subbase of its topology the collection of all

U):UeA. )
In the case -4 equals the topology T, of X, we write » (X) instead of % (X, 4).
2.1. Let A be the family of all finite inersections of the members A. Then

% (X, A) =% (X, A

Proof. Follows from 1.2 (II).
So we can suppose that (U):U& A is a base for » (X, A) replacing A4

by A if necessary.

2.2. There exist topologically equivalent bases A, and A, for some topology
on X and yet

K(X’ 041)’#){ (X: 042)
Proof. Take X to be the set N of all natural numbers. Let
A ={{x}: xENJU{N\{x}: xEN}U{N}, A,=P(N).

Then the set (1, 2> is not open in x (X, 4,).

Let i: X — % (X, oA) be such that i(x)={x}. Then for UCX:i(U)CU>
and i71({U))=U. So if ACJ,, the mapping i is continuous.

2.3. The space » (X, A) is a T,space.

Proof. Let F,#F, and, say, x& F)\ F,. Then (X\{x}) is a neighbor-
hood of F, which does not contain F,.

24. F,&{F,} in x (X, A) & F,DOF,.

Proof. =: Let F,c{F,}. If F,=X, then F,DF,. If F,#X, take any
XEXN\F,. Then (X\{x}) is a neighborhood of F, and 'F,&(X\{x}). The
last relation means that F, C X\ {x}. Therefore

F,CN{X\{x}  xEXN\F}=F,.

< Suppose F, D F, and let (U}, U & A be a basic open set containing F.
Then F, U and so F,CU, or F,&(U) what implies F,&{F,}.

Notice that the empty set @ is everywhere dense in x (X, -4) and that @
need not be open if A does not contain 9.

25. If fin (X, A) —= (Y, B) is continuous, then f is monotone.

Proof. By 2.4, if F,CF, then F,&{F,} and since fis continuous f (F,) &
Ef (FY) C{F(F)}. Using again 2.4, we have f (F,) Cf (F,).
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2.6. If fin (X, A) —>x (Y, B) is a homeomorphism, then f defines a map-
ping g:X—Y which also is a homeomorphism.

Proof. Immediately follows from 1.6. (The converse of 2.6 is, of course,
false).

2.7. The space » (X, -A) is compact and connected for each X.

Proof. Let F'V and F® be two non-empty, closed sets in x (X, oA4).
Then, according to 2.4, {X}EFONF®,

2.8. If fin (X, A) = (X, A) is continuous and onto, then FExXpy={x}.

Proof Let F be an arbitrary element of » (X, o4). Then FCX and,

according to 2.5, f(F)C f({X}). Since f is onto, f(F) is an arbitrary element
of % (X, -4) what implies f({X})={X}.

2.9. If X is compact, then each continuous mapping f:% (X, A) —>» (X, A
has a fixed point.

Proof. Let G be the family of those F&x (X, A) such that f(F)CF.
XSG and F#£0. Let {F:FEZ} be a chain in &. Then, since X is compact

O#£F,= N{F.FCY}CF.
So, by 2.5, f(F,) Cf(F) for FEG. Further
fE)CN{f(F): FELYCN{F: FELY=F,

and F,CG. According to the minimal principle, ([4]. p. 33), there is a minimal
element F of &. Then f(F)CF, and since F is minimal f(F)=F.

Now let X be a set of cardinality 7 taken with the discrete topology
and let A=A (A consists of X and of all complements of singletons). Denote,
in this case, x (X, A) by »(7) orx(X).

0. the other hand, let F={0, 1} be the space having for its open
sets @, {0} and F. The topological product of < copies of F is denoted by F~.
The universality of F for the category of T,-spaces having the weight <7 was
shown by P. S. Alexandrov in |1].

2.10. The spaces »(t) and F* are homeomorphic.
Proof. The mapping f:x (v)— F* given by

1, x&GA

Ay =
L e
for each 4 C X is obviously a homeomorphism. Another universal T;-space in
which any T,-space of the weight <t can be imbedded, is » (D7), where D~ is the
topological product of = copies of the discrete space D={0, 1} (see [10]).
A. N. Kolmogorov asked whether x (D*) and F* were homeomorphic, and
that they are not was shown in [9] and [2].

2.11. The spaces » (D7) and F* are not homeomorphic.
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Proof. By 2.6, the homeomorphism of x (D7) and F = (t) would imply
the homeomorphism of DT and X, but they are not even of the same cardi-
nality (card X=r).

2.12. Let Y be a subspace of X. Then = (Y)~(Y) taken as a subspace
of »(X). N

Proof. If K is any finite subset of X, then basic open sets in x(¥)
and (¥ are (¥YN\K) and (¥>N{(X\K) respectively. It is easy to see that
CYNKD =T NXNKD.

The following result is a theorem due to P. S. Alexandrov ([1]) We will

give a proof close to that of Alexandrov but carried out in the ambient
space x (X).

2.13. Each T,-space of the weight <7t is homeomorphic to some subspace
of » (7).

Proof. Let X be of the weight <t and let £ be a base of closed
sets in X of cardinality o. The mapping f:X—>x (X) given by

f(xX)={FEZ:xCF}

is 1—1 because X is T,-space and so there is an F containing one and not con-
taining the other of each two points in X. Let V=(Z\{F,, ..., F,}> be a
basic open set in x(Z). Then .

fAW)=X\U{F:i=1, .., n}

since for x€ F;, f (x) contains F,. So f is continous. On the other hand
f:X—>f(X) is open for

FO)=ENEN\U)» NS (X)
is open in f(X) when U is open in X.

3. The space A (X, A).

Let X be a topological space and -4 a family of subsets of X containing
at least the set X. The family -4 will be called again a topogologizing system
Now to the pair (X, o4) we correspond the topological space A (X, -4) having
for its elements all closed subsets of X (the empty set excluded or if included
is taken to be close and open) and for the open subbase of its topology the
collection of all

SUCUCHA.
In the case A4 equals the topology &, of X, we write A (X) intead of A (X, A).

Since the mapping >-{:P(X) > P2(X) has a natural extension to the
set X of all finite families of members of P (X), putting for c={U,, ..., U,}EX
that :

>G<=>U1’ HERE (]n<:>U1<m Tt m>Un<’
then it follows that a standard base for A (X, o4) will be
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PLIGLISHE)
where T (4) stands for the set of all finite families of members of A.
3.1. If F,CF,, then F,C{F,}, If A2 J, then F,c{F,} implies F,CF,.

Proof. Suppose F,CF, and let YU, ..., U,{ be a basic open set con-
taining F,. Then F,NU;#9, i=1,_;, n, and it follows that F,NU,;#®@, so
that F,&)U,, ..., U . Hence F,c{F,}.

To prove the second part, suppose FIE@. Then F,DF,, for other-
wise XNF,GCA and F,CH)X\F,(, F,E)X\F,{, what would contradict
FyC{Fy}.

From 3.1 it follows that {X} is everywhere dense in A (X, -4).

3.2. If f+ 2 (X) = A (Y) is continuous, then f is monotone.

Proof. By the first part of 3.1, F,CF, implies F,c{F,} and we have
FF) CfEFD C{f (Fy)}. Now, by the second part of 3.1, f(F)) C f(F,).

33. Let X and Y be Ty -spaces. If N (X)~A(Y) then X~Y.

Proof. Follows from 1.6 (The converse is, of course, true).

3.4. The space \ (X, A) is connected.

Proof. Let F§” and F{ be two open disjoint sets of A (X, o4) such

that A (X, A) =F’ N Fi. If {X}&F®", then {X}=A(X, A)CF" and so F{,
must be empty.

The space A (X) will have some other properties analoguous to x (X, 4)
and being implied by 3.2.

In proceeding further, we give a ,,A-topology*s characterization of a family
of finite character (see [4]). Before stating that characterization, recall that a
family 4 of sets is of finite character if and only if each finite subset of a
member of 4 is a member of -4, and each set A4, every finite subset of which
belongs to -4, itself belongs to 4.

3.5. 4 family ACP(X) is of finite character & A is a closed subset
of M (X), where X is the discrete space.

Proof. =: Suppose 4 is of finite character and let Fd¢ 4, where
F&)(X) (Two sets P(X)\@ and A (X) are identical). Then there is a finite
set K={x,, ..., x,} such that KCF and K A, for otherwise every finite sub-
set of F belongs to -4 and, according to the definition of a family of finite
character F would belong to -4. K is not a subset of any 4& 4 since every
finite subset of a member of -4 belongs to 4. The singletons are open in X

so the set >x,{ N >x,{N - N)>x,{ is open in A (X), contains F and does not
contain any AS A.

<: Suppose oA is closed in A (X). For ACA. {A}C A and, according
to 3.1, each subset and so each finite subset of A belongs to 4. Let FEA (X)
has the property that each finite subset of F belongs to o4. Let YU,, ..., UL

Publications de 1'Tinstitut Mathématique
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be a basic open set containing F. Let x,€FNU,, i=1,...,n Then the set

{x15 - os X }EA and {x,, ..., x,}EOU,, ..., U. This implies FE A= A. Hen-
ce A is of finite character.

3.6. Let F be a closed subset of A (X, A), where AC T .. Then & has a
maximal member.

Proof. Let (Z={F} be a chain in &. Let

A,= U{F: FEZ}
Then .
A, DO F, for each FELZ.

Let YU,, ..., U, be a basic neighborhood of 4,. Let x,C4,NU;, i=1, ..., n
Since U,cACJ, is an open neighborhood of x; in X, there is an y,& 4 such
that y,= U, for each i=1, ..., n. Each y; is an element of some F,c(/ and
let FEX be such that FO F,, i=1,..., n. Now, FEU,,..., U, and so
A,E A=A Applying the maximal principle we conclude that o4 has a maximal
member.

When X is a discrete space and the topologizing system A=J,, 3.6
reduces to the Tukey lemma. On the other hand 3.6 is a consequence of the
Hausdorff maximal principle which is logically equivalent to the Tukey lemma.
So we have.

3.7. The statement 3.6 is logically equivalent to the Tukey lemma (and so
to the axiom of choice).

Note that we have taken the Tukey lemma in the form as given in [4].
According to the same book [4], p. 36 there is another more general formulation.

3.8. The topological product hyperspace.
Consider an arbitrarily given indexed family

G={X.:LcZ}

of spaces. Let X= U {{x X:{&}. Then for {'5£”, two sets ' x Xz and {7 x
X are disjoint. For U C X¢, denote by Uy the set {xU and topologize Xy
so that U, is open if and only if U is open Xy. By this convention it follows
that the subset {x X; of X will be denoted by X_.

Take X to have the discrete topology and the topologizing system A4 to
be the family of all open sets in Xy for every {&CZ. Then A (X, o4) will be
called the fopological product hyperspace of the family G. Consider now the
subspace

M=I1{X;: L}
of A (X, A) given by
M={4AcX:ANX, is a singleton for each {&Z}.

On the other hand, let x{X;:{&Z} be the topological product of the spaces
{X;:{&Z}. Consider the mapping

' x{X,:{e} -1
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given by I' (x)={(C, x (¥)): L&} It is obvious that [ is —1 and onto. From
-1 OULNM={x:xQ)cU}
I{x:x@QeU}=)UNIL

where U;={xU and UC Xy, it follows that I' is a homeomorphism. Hence
the subspace IT of A (X, 4) is just another realization of the topological product
space what motivates us to call A (X, 4) the topological product hyperspace.

4. Compactness of A (X, A4).

In what follows we will prove several set theoretic formulas connected
with the formalism involved in the consideration of compactness of A (X, A).
We will also consider the logical equivalence of some propositions and now
we will cite some of the known equivalences that we will need here.

According to [5], the Tychonoff theorem (the topological product of com-
pact spaces is compact) is equivalent to the axiom of choice (4AC) (see also [12]).

According to [13], the following three propositions are logically equivalent:

Alexander lemma: If S is a subbase for the topology of a space X such
that every cover of X by membres of S has a finite subcover, then X is
compact.

Axiom of choice for families of finite sets (ACF): There is a choice func-
tion for every family of non-empty finite sets.

Tychonoff theorem for finite spaces (TF): The topological product of a
family of finite spaces is compact.

Now consider two families F(V and « of sets in X. (If X was supposed
to be a topological space, F'® would stand for the family of closed and « of
open sets in X). Both F(V and « will be considered fixed. Let ¥ ={c} be some
collection of finite families of members of «. The family = consisting of one
and only one member of each ¢ Z, will be called the frace of Z. (w is actually
a choice function for ). Let for 6={4,, ..., 4,}, 4,Ea, i=1,...,n,

Yol ={FEFM:FNA,#98, i=1, ..., n}.

4.1. UDe e} =N{|n|(:n trace of X}.

Proof. Let F& U{)o(:6&X}. Then there is a 6,& X such that F& o (,
what means that FNA4#0 for each AE€o,. Since for each =, [®|D>A4 for
some ACa,, it follows that F(,7|#@ for every =. Hence FE N{)|=|(}.

Conversely, let F& N{)|w|(}. Suppose that for each ¢ there is an 4°Co,
such that FN A°=@. Take m={A4°}, then FN|w|=9 (we use ACF here). So
for some 6& X, F& ol

F(Y)
The notation A=X will mean that

FOM(XN\A4)=0.

. F()
For example, if X= U{X¢:{EZ}, FO=TI, A= X, then A=X (see 3.8). So if
the members of F! are “big*, the “small*“ parts may be “equal“ to X.

9*
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F(Y)
42. If U{o(:6EZ}=FW, then for each trace = of X, |m|=X holds.

Proof. By 4.1, FO=N{|x|¢(} thet is for each =, FW=)>x|[(. So
for FEF® it follows that F|w|#%9 and so F is not contained in XN\ =]
FY)
Hence |n|=X. ,
: - F(1) ' )
4.3. Let for each =, |n|=X. Then U{)G(:cez}:F(l“.
Proof. Using 4.1 and having that )7 |{=)>X{, we get

UDe 6= = NDIR[G = NXG = FO.

.4.4. A proof of the Tychonoff theorem. Let {X¢:{<CZ} be a family of
compact topological spaces, IT=TII{Xy:{&(Z} their topological product (see 3.8
again). Let {DU{} be a cover by subbasic open sets. Then

- U{HUG. ‘;

Now -at least one Xy is covered by the sets {U}, for otherwise there would exist
x¢=X, for every { not being contained in any U and A={x;:{c}¢ U{U}
(Here we use AC).
X, being compact and X;C (U{U}, there exists a finite number of sets
U,,..., U, such that U U - - UU,=Xy. Hence II=)U, (U - UHUL, since
II

the trace ©={U,, ..., U,} is such that |w|=X and 4.3 applies. The rest of
the proof is implied by the Alexander lemma.
Next we prove a consequence of T'F:
4.5. Let FO={do{:6=Z}. If every trace = of X has a finite sub-
F1)
family =’ such that |m'|=X, then there exist a finite subcollection %' of X such

that
FO =)o 62}

Proof. Consider each o as a finite topological space taken with the
discrete topology. Then the traces m can be considered as the elements of the
topological product II {c : 6 & X} =TI. Each = is the element of )='( and >='< is
an open set in II. According to TF, IT is compact and there is a finite subcover
of the cover {H)w'(},

>1t;<, >1':'2<, e, >7-:,,<

Let X,={o: 679, for some i}. Take an arbitrary = from II. Since 7 belongs
to some >TL';< and for each ACw;, ACw (mN{A} =4 for AEﬂ;), the union |y,
F(Q1

of those AEw which belong to some c& X, is such that |wz|=X. By 4.3,
UDeCoE T} = FO.

Now we will use 4.5 to obtain the Alexander lemma (4), which will be
taken in the following form:

Let S be any family of subsets of X with the property: any subfamily
which covers X has itself a finite subfamily which also covers X. Then the
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family S* of all finite intersections of members of & enjoys the same property

(see [S]).
4.6. 4.5. implies (A).

Proof Let a subfamily A* of S* cover X. Each A*&4* is of the
form A4, - - - NA4,, whére 4,€J, and let o (4*¥)={4,, ..., 4,}. Since 4,0 A4*,
the traces Z ={o (4*): A*C 4*} cover X so that, by 4.3, S

U{o (4% A*EA*} =P (X).

Since for each trace there is a finite subfamily which also covers, applying 4.5,
we have

UDs ) i=1, ..., n} =P (X),

for some A; < A* Take xC X, then xE Yo (A:)< for some i. The last relation
means that xeA; and so

X=AiU---UA,.

In proving 4.3, or better 4.1, and 4.5 we used ACF and TF. Combining
that with 4.6 we have.

4.7. The propositions ACF, TF 4.5 and A, are all logically equivalent.

The question of the logical equivalence of 4 was raised in [5] and has
probably been znswered so that we do not insist upon it.

4.8. If X is compact, then \(X) is compact.

Proof. Let A (X)= U{)o(:6&X}. Since X is compact all traces of X
have finite subfamilies which also cover X and 4.5 applies.

Note that there are several proofs of this fact. Let us show how, for X
being a T,-space, 4.8 is directly implied by 4.3. Indeed x&)o{ means xC N
N{U:U Eo} and the last sets form an open cover which is reducible to a
finite one, say o,, ..., 6,. Then the traces of X ={s,, ..., 6,} obviously cover X
and 4.3 applies.

I thank Professor Dj. Kurepa for several conversations on set theory.
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