REMARK ON SOME RESULTS OF S. PREŠIĆ AND S. ZERVOS

Milan R. Tasković

(Communicated March 5, 1971)

In his thesis ([1], p. 342—343), S. Zervos has proved a theorem which comprises several results of other autors concerning bounds of moduli of zeros of polynomials. In [2], S. Prešić gave a simple lemma, from which he deduced that theorem directly. The Prešić's lemma can be formulated as follows:

Let E be a nonempty set totally ordered by the relation \leq and let the function $g(x_1, \ldots, x_k)$ (x_1, \ldots, x_k) $g(x_1, \ldots, x_k)$ \in E) be decreasing with respect to each of its arguments. Then the following implication holds:

$$\xi = g(\xi, \ldots, \xi) \Rightarrow \xi \leqslant \max \{\lambda_1, \ldots, \lambda_k, g(\lambda_1, \ldots, \lambda_k)\} (\lambda_1, \ldots, \lambda_k \in E).$$

We remark here that this statement can be extended by the following Lemma. Let the nonempty set E be totally ordered by the relation \leq and let the function $g(x_1, \ldots, x_k)$ $(x_1, \ldots, x_k, g(x_1, \ldots, x_k) \in E$ be decreasing with respect to each of its arguments. Then:

(1)
$$\xi \leqslant g(\xi,\ldots,\xi) \Rightarrow \xi \leqslant \max \{\lambda_1,\ldots,\lambda_k, g(\lambda_1,\ldots,\lambda_k)\} (\lambda_1,\ldots,\lambda_k \in E),$$

(2)
$$\xi \geqslant g(\xi, \ldots, \xi) \Rightarrow \xi \geqslant \min \{\lambda_1, \ldots, \lambda_k, g(\lambda_1, \ldots, \lambda_k)\} (\lambda_1, \ldots, \lambda_k \in E).$$

Hence, in particular,

(3)
$$\xi = g(\xi, \dots, \xi) \Rightarrow$$

$$\min \{\lambda_1, \dots, \lambda_k, g(\lambda_1, \dots, \lambda_k)\} \leqslant \xi \leqslant \max \{\lambda_1, \dots, \lambda_k, g(\lambda_1, \dots, \lambda_k)\}$$

$$(\lambda_1, \dots, \lambda_k \in E).$$

Proof. Implication (1). Let $\xi \leqslant g(\xi, \ldots, \xi)$ and $\lambda = \max\{\lambda_1, \ldots, \lambda_k\}$, where the elements $\lambda_i (l < i < k)$ are arbitrarly chosen. If $\xi \leqslant \lambda$, then

(4)
$$\xi \leqslant \max \{\lambda_1, \ldots, \lambda_k, g(\lambda_1, \ldots, \lambda_k)\}$$

obviously holds. If $\lambda \leq \xi$, then

$$\xi \leqslant g(\xi,\ldots,\xi) \leqslant g(\lambda_1,\ldots,\lambda_k)$$

and (4) holds again.

One gets the implication (2) by applying the above result case where relation \leqslant is replaced by relation \leqslant = \geqslant ; in fact, after this change, every maximum becomes a minimum and the function $g(x_1, \ldots, x_k)$ remains decreasing with respect to each argument.

The last assertion is evident.-

We note that, by application of the proved lemma (in fact of (3)), one can simultaneously obtain the upper bound and the lower bound of the root of equation

$$x^n = a_1 x^{n-1} + a_2 x^{n-2} + \cdots + a_n \left(a_1, a_2, \dots, a_n \ge 0; \sum_{i=1}^n a_i > 0 \right),$$

given by the mentioned theorem of S. Zervos, while the application of the Prešić's lemma only gives directly the upper bound.

REFERENCES

- [1] S. Zervos, Aspects modernes de la localistion des zéros des polynomes d'une variable, thèse, Sci. math., Paris, 1960.
- [2] S. B. Prešić, Sur un théorème de S. Zervos, Publ. Inst. Math. t. 10 (24), 1970 pp. 51-52.