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Class C of continuous complex-valued functions of a non-negative real variable
forms a commutative algebra without zero divisors where the product is defined
as the finite convolution and the sums and scalar products are defined in the
usual way. The quotient field of this algebra is the operator field K of Miku-
sinski. In this operator field we have two types of convergence.

First type. A sequence of operators {a,} converges to the operator acK
if there exists an element k&C, k<0 such that: 1. kq,EC for every nEN;
2. ka=C; 3. the sequence {ka,} converges almost uniformly (uniformly on every
interval [0, T], T<<e0) to ka.

Second type. A sequence of operators {a,} converges to the operator a=K
if there exists a sequence {k,} belonging to C such that: 1. The sequence {k,}
converges almost uniformly to k& C, k+£0; 2. k,a,&C for every n&EN; 3. kacC
and 4. the sequence {k,a,} converges almost uniformly to ka.

Let X be a subset of K. The sequence closure of X, denoted by X, is
the set of such elements x<K for which there exists a sequence x, belonging
to X and converging to x. The properties of the sequence closure characterize
in a sense the topology introduced by the definition of the limit.

K. Urbanik [2] showed that neither type of convergence satisfies
Kuratowski’s axiom for the closure: X = X.

In this paper we have investigated the following question: Does there

exist a fixed number »n such that X(+D = X®? We noted by X» the n-times
iterated operation of closure. The answer was negative for both types of
convergence. Furthermore a countable iteration of closure does not close it.

We denote by f or {f(z)} the representation of a function f(¢) in K.
k-1
} will be noted by

The integral operator is /={1} and its powers /¥ = [(k N
L (k). s is the differential operator and exp (—his), A>0, the translation ope-
rator. It is well known that exp (—2,s) exp (—A,s)=expf[—(A; +2;)s] where
A, and X, are positive. Also:

) exp (—15) f:[O, O<t<n }

f{@E—N), O0<a<t

g*
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Lemma 1. If m and p are different natural numbers, we can not find
natural numbers n, k, r and q such that:

@) exp (ms) L (n)+exp (ps) L (k)=exp (rs) L(q)
Proof. — Relation (2) can be written in the form:
(3) exp[—(p+r)s] L(n)+exp[—(m+r)s] L(k)=exp[—(m+p)s]L(q)

We suppose without any restriction that p<m. The property of the
translation operation expressed by relation (1) shows that p+r=m+p or
m=r.

Now relation (3) reduces to the form:
exp (—ms) L (k) =exp (—ps) [L (9)—L (n)]
which is impossible.

Lemma 2. The sequence exp(),s) L(n) for a bounded sequence M,
converges to zero in both types of convergence.

Proof. — Let A,<<M. We consider the sequence
n—1
exp (—Ms) exp (4, 5) L (n) = exp [—(M—},) 5] { ( : 1)']
n—1)!

which belongs to C. On every interval O<r<7T< s this sequence converges
to zero.

Theorem. There is no fixed number m such that for every subset X CK:
Xm=D = X neither for the first type of convergence nor for the second.

Proof. — Let {g(i,n)}, for a fixed i=1, 2,...,k be a sequence of
different natural numbers. These k sequences have no common elements.

Let us consider the set XCK consisting of elements which have the
following form:

@ Lig(1,p)lexplg 2p)l+Lg (2p,)] explg B, p)l+.. .+
+L[g (m,p,)] explg (m+1, pe)l.

Let us remember that L (k) means /*. According to our lemma 1 every
element of X consists purely of m addends. We shall show that any sequence:

) Lg(1,n)] expq(2,n)+LJq(2 n,) explg (3, n)]+...+
+L[g (m,n,)] explq)m+1,n,.)]=A4,

can converge only if the sequences {n,}, {n,},..., {m,+} consist of a finite
number of different elements. Only {n,} can be a sequence which tends to — oo.
Suppose that A, converges and has a limit of the second type. Then

there exists a sequence k,=C such that k,4,=F,CC. So we have:

m+1
k,{L[q(1,n)] exp[~ i q(k,nk)]+...+
k=3
©) +Llg(m,n,)] exp[— S atk, nk>]}=
k=2

m+1
=F,exp [—— > qik, nk)]
k=2
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The right side of relation (6) is a function which vanishes for 0<t<
m--1
< Z g (k,n). According to Titchmarsh’s theorem, k,(¢) is equal to zero for

k=2
m+1

(7 0<r< 3 qlk,m)—y,
k=2

where v defines the interval [0, y) on which the expression in brackets on the
left side of relation (6) vanishes. It is easy to see that y is equal to the mini-
mum of the numbers

m+1 m
Z q(k’nk)5"'5z q(k,nk)
3 k=2

k=

If one of the sequences {n,}, {n},..., {n,.} tends to infinity, k,—0
because the interval (7) tends to the interval [0, o). In this case the sequence
A, does not converge. The only posEibility is that the sequence {r,} tends to

infinity. So by lemma 2 in the set X, the closure of X, the new elements are
of the form:
8) L[g(2,p,)] explg(3,p)]+Lg (3,p3)] explg(4,p)]+ ..+
+L1[g (m, p,)] explg (m-+ 1, p,.)]
We see that their form is the same as those in (4) only the number of
addends is now m—1.

The k—th successive use of the operation of closure, /<k <m—1, gives
new elements of the form (4) but with precisely m—k addends. In other

words X®-D-£X®_ 1 <k<m—1. After the m-th application of the operation

of closure the only new element is zero, and X ™12 X This proves our theo-
rem.

We can construct a set YK such that Yo = Y®, for every k&EN.

Let {g(i,n)}, i,nEN be different natural numbers. We shall consider the
set Y whose elements are:

Lg(1,m)} explg (2,m)]+{1} 1
Lig(1,n)] explqg (2, )]+ L g (2,n)] explq (3,"3)J+{2]
Lig(1,n)] explg(2,n)]+L{q(2,n,)] explq (3], )+ .+
LI Gom)) expla Gt Lme)l + ]
where {n} are natural numbers. In every element of Y, from all addends,

only {%} belorgs to C. The element which does non belong to any Y®, k=N

is zero. To prove this we us: the same method as in proving our theorem.
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