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O. Introduction

Books [1] and [2] contain certain amount of inequalities involving the

L)

gamma function. Most of them give bounds for the expression , Wwhere

.. . n n—I1
x, y are positive numbers of a special form, as for example x=—, y=—2—

where n>2 is a positive integer. In the first part of this paper we shall

I (x)

give bounds for the expression If(j, where x, y are arbitrary real numbers
J
greater than 1. The comparison of these bounds with the ones contained

in [1] and [2] show that not only are inequalities (1.1) more general in form,
but that they are also in some cases sharper.

In the second part of this paper we give new bounds for the expres-

sion RCIANC) which is also treated in [1} and [2], while in Part 3 we give

2
r(ﬂ)
2
inequalities for some more general expressions.

We have, in fact, taken up a remark given in the Preface of [1], which
states that a large number of inequalities involving positive integers hold
under weaker conditions than those given in [1]. We have not taken into
account the results regarding the gamma function which appeared after the
publication of [1] and [2], and shall probably do so in another paper.

The authors are indebted to Prof. D. S. Mitrinovié, who has read this

paper in manuscript and whose suggestions have influenced the final presen-
tation of the text.

b

1. Bounds for I;(_x)
rom

1.1. Theorem 1. Let x>y>1. Then, we have

1
xley T(x) x" zer
< <

1.1 <
(b ytex ()

1
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Proof. Let us prove first the left inequality in (1.1). It is equivalent to

L) ey<1"(x)e"’

yy—l xx—l
i.e.,
log @'y < loge L&) ,
yy—l xx1
or
(1.2) y+log' (y)—ylogy+logy<x+logI (x)—xlogx -+ log x.

Consider the function f defined by

S (x)=x+1logI (x)—xlog x - log x.
We have

=L
f ==

1
ogx+-—.
(x x

In virtue of section 3.6.55 from [1], p. 288 or [2], p. 283, we conclude
that f'(x)>0 for x>1, i.e., that f is an increasing function for x>1, which
for x>y>1 implies inequality (1.2), which is equivalent to the left inequality
in (1.1).

Let us now prove the right-hand inequality of (1.1). It is equivalent to

e"F(X)<eyF(y)‘
1

x—— Y-

x772  p¥73

or, after taking logarithms, to
1 1
(1.3) x+logl (x)—x logx—i-?logx<ylogl" (y)—y logy+—2~ log y.

For the function g, defined by
g(x)=x+logl (x)—xlog x—i—%logx,

we have
I (x) 1

—log x+—.
I' (x) 2x

Again by section 3.6.55, ([1}, p. 288 or [2], p. 283) we see that g (x)<0
for x>1, which for x>y>1 implies inequality (1.3), i.e., the right-hand
inequality of (1.1).

The theorem is proved.

8=

1.2. The following inequalities were proved by W. Gautschi (see [1],
p. 286 or [2], p. 281):

PRNCED)

1.4 1-s
(4 " I'n+s)

<(n+ Db,

where n is a positive integer, and O<s< 1.
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Setting: x=n+ b, y=n+s:in (1:1) we ‘obtain, -

O+ LOtD (D™

e s < es 1,
(n+ syr+s-t r'(n+ s)

(1.5) B
(1 +9)"72

1° For s—l 1nequahtles (1 4) (1 5) commde since they become equalmes

. [
SESEN

2° For s=%, n=1, ‘;he_left-hand 1nequg111ty of (1.5) is weaker than the
~orresponding inequality of (1.4).
3° For s=%, n=1, the left-hand  inequality of (1.5) is sharper than

the corresponding- inequality of (1.4).

In other words, the left-hand inequalities of (1.4) and (1.5) cannot be
compared to each other.

4° The expressions which appear on the right hand side of ineqﬁalities
(1.4) and (1.5) were compared by D. V. Slavi¢ on a computer. He showed

that for a large number of values for s and » the right-hand side of 1nequa-
lity (1.5) is sharper than the right-hand side of (1.4).

< 1.3. The following inequality

(1.6)

o r(l) S
/2n—3< 2 < (n—1)2
AV n—1 2n—1)’
1" .
%)
which holds for n>2 (n is a positive integer), was proved by J. T. Chu
(see [1], p. 288 or [2], p. 282).

Putting in (1.1) Vx=%, y="—1

(n>2), we get

oz r ( > ) vt
(1.7 \/(n—l)”‘328 (n——l) \/(n—l)n—z 2e’

The computer checkings showed that for a large number of values for n
the inequalities (1.6) are sharper than inequalities (1.7).

1.4. For n=1, 2, ... and 0<r<1, Sh. Zimering (see [1], p. 289 or [2],
p.- 283) obtained the following result

n’——(n—-l)’> I“(n+r).

(1.8)
r n!

Putting in (1.4) r=s, we obtain

C(n+r) F(n+r)

1.9 St
(19) ? l"(n+1) n!
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Inequality (1.9) is sharper than (1.8). Indeed, by the Lagrange mean value
theorem we have

n—(n—1)r=rkr-1>rpr-1 Ec(n—1, n).

Remark. The proof that inequality (1.9) is sharper than (1.8) is due to R. R. Jani¢
Putting in (1.1) x=n+1, y=n+r, we get

(n4rymr—t - Fn+r)
(n+ 1) “T@m+l)
Introduce the following notations:
- b (n + r)n+r~1 olr B n’—(n— l)i
| (n+ 1)~ ’ r .

Some values for the differences b—a, c—b are listed in the following

n r b—a c—b n ¥ b—a c—b
1 0.1 0.24157885  8.75842116 3 0.7 0.00230463 0.04013582
10 0.1 (-00480357 0-00124861 15 0.7 0.00106489 0.00350631
20 0.1 0.00132562  0.00024220 30 0.7 0.00048475 0.00134412
30 0.1 0.00061968  0.00009806 1 0.8 —0.02265722 0.27265723
1 0.3 0.08932920  2.24400413 2 0.8 —0.00458456 0.06041040
10 0.3 0.00439641 0.00301158 3 0.8 —0.00092874 0.03209163
20 0.3 0-00142644  0.00078599 4 0.8 —0.00018774 0.02096452
30 0.3 0.00072876  0.00037093 15 0.8 0.00053920  0.00344693
1 0.5 0.00963146  0.99036854 30 0.8 0.00028424  0.00142701
10 0.5 0.00330744  0.00502010 1 0.9 —0.01535950 0.12647061
20 0.5 0.00127879  0.00158843 2 0.9 —0.00461588 0.03387843
30 0.5 0.00071703  0.00083031 7 0.9 —0.00012077 0.00633392
1 0.6 —~0.01108312  0.67774979 8 0.9 —0.00003848  0.00536430
2 0.6 0.00673880  0.09493052 | 9 0.9 0.00001281 0.00463994
15 0.6 0.00154186  0.00311782 : 10 0.9 0.00004558 0.00407982
30 0.6 0.00063263 0.00110476 . 20 0.9 0.00009835 0.00178937
1 0.7 —0.02147349  0.45004492 | 30 0.9 0.00008076  0.00112013
2 0.7 —0.00061096  0.08050822

TABLE 1

From the above Table we see that inequality (1.1) is sharper than (1.8),
but it is weaker than (1.4) for a large number of values of n and r. However,
inequality (1.1) can be sharper than (1.8).

2. Bounds for M
r "il)
5

2.1. Theorem 2. For x>1, y>1, we have

Xy TELE) _ wip

(21) (x+y xX+y r x+y 2 (x+y_2)x+y—2'
ET Y
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Proof. The left-hand inequality (2.1) is equivalent to

qﬁ% s
2.2) V2| . THTO)
(x + y)"_;y x* ¥
2
For the function F, defined by
F (x) = r_(—x) .
xx
we have

d? d? 1
e (log F (x)) = e (logI' (x))—"; .

In virtue of section 3.6.55 ([1], p. 288 or [2], p. 283), for x>1, we
have (log F (x))"" >0, which means that the function x> log F(x) is convex.
Applying the well known Jensen inequality for convex functions to the function
x> log F (x), we obtain the left-hand inequality of (2.1).

Let us now prove the right-hand inequality of (2.1). For the function G,

defined by
I (x)

6=

we have x>1,

—d—z— (log G (x)) = d—z (logI’ (x))—-#<0
dx? dx? 1

(again by 3.6.55, [1], p. 288, or [1], p. 283), which implies

xX+y 2
r(3) L T®ro)
(x+y—-2)x_%;2 (x—1)"t(y—1y!
2

The above inequality is equivalent to the right-hand inequality of (2.1).

This completes the proof of Theorem 2.

2.2. Inequality

rmro)
23) FG+32/,
2

was proved by D. Z. Pokovié¢ and P. M. Vasié (see [1], pp. 285—286, or
2], pp. 280—281).

Using the inequality

(see [3] or [4], p. 188), which holds for x;>1, we conclude that the left-hand
inequality of (2.1) is sharper than (2.3).
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2.3. The following inequality was proved by J. Gurland (see [1], p. 287
or [2], p. 282)

F(c 2b)l"(c) >bz-'l—c
Ce—pr " e

and it holds for ¢>0 and ¢—2 b>0. This inequality for c=y, =%€ becomes

FOTG)_ (y—x)2+4y
2.4) r (iﬂ)z ay
2

The left hand inequality in -(2.1) is in some cases weaker, and in some
cases stronger than inequality (2.4). Table 2 shows that as y increases, ine-
quahty (2 1) becomes more. and more sharp than (2.4).

2.4. The folIowmg inequality, which holds for ¢>2,¢—25>0, b;éO b#— 1.
2T (c)> b?(c—2)
I (c—b)? (c—b—1)?
is due to D. Gokhale (see [1], p. 287, or [2], p. 282).

It can be written in the form
9 NOLION
"7
2
Though in some cases inequalit’y (2.5) 1s stronger than the left hand in-

equality of (2.1), Table 2 shows that as y increases, (2.1) becomes more and
more sharp than (2.5).

Introduce the following abbreviations:

L 0= 0=2) L X

G—x1? (y—2)
(x+y—2)2

—_—)2
R i) e A

4y - (x+y_2)2 (x_*_)_))ery .
2

x y B—A4 . C—4 C—B

1 1 0.00000000 0.00000000 0.00000000
1 2 —0.12500000 0.06018518 0.18518518
1 3 0.66666666 0.35416666 —0.31250000
1 c 4 1.43750000 1.05893999 —0.37856000
1 5 2.20000000 2.48669411 0.28669410
1 15 9.73333334 1551.44495487 1541.71162176
1 30 20.99166669 25903288.31250000 25903267.31250000
2 1 —1.25000000 v —0.06481481 1.18518518
2 5 0.62999999 [ 70.49282507 —0.13717492
2 6 1.11111111 *-1.18098960 0.06987849
2 15 6.94777778 273.71154570 266.76376807
2 30 17.85777781- 2420231.26171875 2420213.40527343
3. 1 —2.00000000 —0.31250000 1.68750000
3 2 —0.12500000 —0.01908000 0.10591999
3 6 0.35969387 0.28978689 —0.06990698
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From Table 2 we see that C>B for y>x-3.
for x=y. We also see that C>A4 (and B> A) for x>y.

3. Generalisations of

Some inequalities for the gamma function

B—A

0.67857142
4.91250000
15.16537461
—3.25000000
-—0.04333333
0.23412698
0.46000000
3.42623991
12.85104168
—5.00000000
—0.02168367
0.16503099
0.33333333
2.34567901
10.86145546
—21.25000001
—0.00355632
0.05141287
0.11097992
4.42289936
—350.00000002
—0.00139623
0.02484391
0.05509868
1.53224716
—91.25000005
—0.00074007
0.01460698
0.03287981
0.38194444

C—A4

0.70550311
75.37120610
369847.78430175
—0.62856000
—0.00902877
0.191911%94
0.47308072
26.69044004
77015.28396606
—0.71330589
—0.00525080
0.13681548
0.34064523
11.01751812
20045.71400451
50.53114973
—0.00110019
0.04370638
0.11207784
182.92356908
1505.71162176
—0.00046277
0.02131466
0.05544537
9.91272539
37546.58656311
—0.00025336
0.01259169
0.03303095
0.90342907

TABLE 2

1_,<x—+-y
2

Fx)ro)

2

3.1. Since for a convex function f we have

(3.1)

2:1 P X

f n

113

C—B

0.02693168
70.45870611
369832.61889648
2.62143999
0.03430455
—0.04221503
0.01308072
23.26420013
77002.43286132
4.28669411
0.01643287
—0.02821551
0.00731189
8.67183911
20034.85256195
71.78114977
0.00245612
—0.00770649
0.00109791
178.50066971
1555.71162176
0.00093346
—0.00352925
0.00034669
8.38047823
37637.83656311
0.00048670
—0.00201528
0.00015113
0.52148462

Naturally, 4=B=C

and for a concave function f, we have the inequality which is opposite to (3.1),

applying (3.1) to the function x»log—x—
x)

posite inequality to x> log 1y

equalities

I (

(x—
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x

(which is convex) and the op-

(which is concave), we obtain the in-
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Ijl (x,—1)Pi xi—1 1—"1 T (x)? 1"1 x,Pi i

=1 f=
> i > i=1

t

which generalise (2.1).
3.2. For x>0, the following formula holds
dk @ (k—1)1
——(logI' (x))=(—1F > = k>2)
( Z o (x-+n)k

(see, for example, [5]). This implies that the functlon x+>log (x) is convex
of order 2m—1 (m=1, 2,...) and concave of order 2m (m=1, 2,...), in
the sense of T. Popoviciu (see [6]). Therefore, we have

(4.1) Hr(k”(” k)y>< vk (7) [ <1 for n=2m—1,

>1 for n=2m
where m is a positive integer.
Inequality (4.1) reduces to (2.3) for n=2.

n

*
% *

Tables 1 and 2 present short versions of much more extensive tables
compiled by D. V. Slavi¢ on an IBM 1130 computer for which the authors
wish to express their gratitude.
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