A NEW PROOF OF BELOUSOV'S THEOREM FOR A SPECIAL LAW OF QUASIGROUP OPERATIONS

Svetozar Milić

(Communicated October 14, 1970.)

1. V. D. Belousov, in the paper [1], proved the following theorem: If four quasigroups A_i (i=1, 2, 3, 4) are connected by the general associative law

$$A_1(A_2(x, y), z) = A_3(x, A_4(y, z)),$$

then all A_i are isotopic to one and the same group.

The above theorem is generalized in [2] by Belousov for the case of 2n-2 binary quasigroup operations.

In the present paper, for a family of 2n-2 quasigroup operations connected by the following law

$$(1.1) A_1 A_2 \dots A_{n-1} x_1 x_2 \dots x_n = A_n x_1 A_{n+1} x_2 \dots A_{2n-2} x_{n-1} x_n$$

we give a new direct proof of the generalized Belousov's theorem. The type of the considered equations (1.1) is associative one, which means the following:

If $A_i = A_j$ for every $i, j \in \{1, ..., 2n-2\}$ then the formula (1.1) is the consequence of the associative law.

2. Let $Q(A_i)$ be the family of quasigroup, where operations A_i are defined on the same nonvoid set Q. We are going to prove the following

Theorem 1. If quasigroups A_i $(i=1,\ldots,2n-2)$ are connected by the general law

(1)
$$A_1 A_2 \ldots A_{n-1} x_1 x_2 \ldots x_n = A_n x_1 A_{n+1} x_2 \ldots A_{2n-2} x_{n-1} x_n$$

then all A, are isotopic to one and the same group.

Proof. Let us introduce notations

$$A_{n-1} x_1 x_2 = y_1 \qquad A_{2n-2} x_{n-1} x_n = z_1$$

$$A_{n-2} y_1 x_3 = y_2 \qquad A_{2n-3} x_{n-2} z_1 = z_2$$

$$A_{n-3} y_2 x_4 = y_3 \qquad A_{2n-4} x_{n-3} z_2 = z_3$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$A_2 y_{n-3} x_{n-1} = y_{n-2}$$

$$A_1 y_{n-2} x_n = y_{n-1} \qquad A_{n+1} x_2 z_{n-3} = z_{n-2}.$$

As the operations A_i satisfy the law (1), then from the equation (2.1) follows the equation

$$(2.2) A_n x_1 z_{n-2} = y_{n-1}.$$

Proceeding from A_i $(i=1,\ldots,2n-2)$ to their left inverse operations, we obtain

$$B_{n-1} y_1 x_2 = x_1 \qquad B_{2n-2} z_1 x_n = x_{n-1}$$

$$B_{n-2} y_2 x_3 = y_1 \qquad B_{2n-3} z_2 z_1 = x_{n-2}$$

$$B_{n-3} y_3 x_4 = y_2 \qquad B_{2n-4} z_3 z_2 = x_{n-3}$$

$$\vdots \qquad \vdots \qquad \vdots$$

$$B_2 y_{n-2} x_{n-1} = y_{n-3} \qquad B_{n+1} z_{n-2} z_{n-3} = x_2$$

$$B_1 y_{n-1} x_n = y_{n-2}$$

and finally

$$(2.4) B_n y_{n-1} z_{n-2} = x_1 def$$

where $B_i = {}^{-1}A_i$ (i = 1, ..., 2n-2), i.e. $B_i xy = z \Leftrightarrow A_i zy = x$. From (2.3) we obtain

$$x_1 = B_{n-1} y_1 x_2 = B_{n-1} B_{n-2} y_2 x_3 B_{n+1} z_{n-2} z_{n-3} = \dots$$

$$= B_{n-1} B_{n-2} \dots B_2 B_1 y_{n-1} x_n B_{2n-2} z_1 x_n B_{2n-3} z_2 z_1 \dots B_{n+1} z_{n-2} z_{n-3}.$$

Because of (2.4) we have

$$(2.5) B_{n-1}B_{n-2}...B_2B_1y_{n-1}x_nB_{2n-2}z_1x_nB_{2n-3}z_2z_1...B_{n+1}z_{n-2}z_{n-3}=B_ny_{n-1}z_{n-2}$$

Elements y_{n-1} , x_n , z_i ($i=1,\ldots,n-2$) are arbitrary elements of the set Q. If we change the above variables as follows: y_{n-1} with x_1 , x_n with x_2 , z_i with x_{i+2} ($i=1,\ldots,n-2$), then (2.5) becomes

(2)
$$B_{n-1}B_{n-2}...B_2B_1x_1x_2B_2x_2x_3x_2B_2x_3x_4x_3...B_{n+1}x_nx_{n-1} = B_nx_1x_n$$
.
From (2) we obtain

$$(2.6) B_{n-2} \dots B_2 B_1 x_1 x_2 B_{2n-2} x_3 x_2 B_{2n-3} x_4 x_3 \dots B_{n+2} x_{n-1} x_{n-2}$$

$$= {}^{-1} B_{n-1} B_n x_1 x_n B_{n+1} x_n x_{n-1}$$

from there we have

$$^{-1}B_{n-1}B_nx_1x_nB_{n+1}x_nx_{n-1} = ^{-1}B_{n-1}B_nx_1x_n^0B_{n+1}x_n^0x_{n-1}$$

where x_n^0 is a fixed element of the set Q, because the left side of equation (2.6) does not contain x_n . This fact allows us to introduce the operation D_{n-3} in the following way:

$$(2.7) \ B_{n-2} \ldots B_2 B_1 x_1 x_2 B_{2n-2} x_3 x_2 B_{2n-3} x_4 x_3 \ldots B_{n+2} x_{n-1} x_{n-2} \stackrel{\text{def}}{=} D_{n-3} x_1 x_{n-1}.$$

The operation D_{n-3} is obviously a quasigroup. Therefore, the equation (2) becomes

$$(2.8) B_{n-1}D_{n-3}x_1x_{n-1}B_{n+1}x_nx_{n-1} = B_nx_1x_n.$$

Further, from (2.7) we obtain

$$(2.9) B_{n-3} \dots B_2 B_1 x_1 x_2 B_{2n-2} x_3 x_2 B_{2n-3} x_4 x_3 \dots B_{n+3} x_{n-2} x_{n-3}$$

$$= {}^{-1} B_{n-2} D_{n-3} x_1 x_{n-1} B_{n+2} x_{n-1} x_{n-2},$$

where, according to the same reasoning as before, we can put

(2.10)
$$B_{n-3} \dots B_2 B_1 x_1 x_2 B_{2n-2} x_3 x_2 B_{2n-3} x_4 x_3 \dots B_{n+3} x_{n-2} x_{n-3} \stackrel{\text{def}}{=} D_{n-4} x_1 x_{n-2}$$
.
Now the relation (2.7) becomes

$$(2.11) B_{n-2}D_{n-4}X_1X_{n-2}B_{n+2}X_{n-1}X_{n-2} = D_{n-3}X_1X_{n-1}.$$

By continuing the procedure, we obtain that the equation (2) is reduced to the following system of n-2 equations of general transitivity

(2.12)
$$B_{2}B_{1}x_{1}x_{2}B_{2n-2}x_{3}x_{2} = D_{1}x_{1}x_{3}$$

$$B_{i}D_{i-2}x_{1}x_{i}B_{2n-i}x_{i+1}x_{i} = D_{i-1}x_{1}x_{i+1} \qquad (i = 3, ..., n-2)$$

$$B_{n-1}D_{n-3}x_{1}x_{n-1}B_{n+1}x_{n}x_{n-1} = B_{n}x_{1}x_{n}.$$

By the known theorem ([1] p. 99), we have that the four quasigroups which are connected by any equation from the system (2.12) are isotopic to one and the same group. As every of quasigroups D_k $(k=1,\ldots,n-3)$ is in two equations of the system (2.12), so we have that all B_i $(i=1,\ldots,2n-2)$ are isotopic to one and the same group Q(.). From there by simple transformation we have that all A_i $(i=1,\ldots,2n-2)$ are isotopic to the group Q(.).

Biography

[1] В. Д. Белоусов, Системы квазигрупп, УМН, ХХ, вып 1 (121), (1965), 75—146. [2] В. Д. Белоусов, Уравновешенные тождества в квазигруппах, Матем. сб. 70 (112), № 1 (1966), 55—97.