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Abstract

In this note a variational method for solving the problem of flow in
laminar boundary-layers of incompressible fluids is presented. For the sake of
simplicity, the discussion is limited to the appromixate solutions for the steady
plane flow with simple geometries. Two examples are considered in details.

1. Introduction

It is well known fact that the general equations of motion of irreversible
processes, in use at the present time, are not derivable from Hamilton’s
variational principle. In continuum mechanics difficulties arise, even in the
case of an ideal fluid, when the Eulerian description is used. However, the
use of Hamilton’s variational principle as a unifying natural law has excited
the imagination of physicists and engineers for a very long time. For example
according to Th. De Donder “Laws of nature may always be expected to
possess specific variational properties as a consequence of their stability. In
addition, when the equations of motion are derivable from a variational
principle (Hamilton’s principle) a general and systematic approximative proce-
dure for establishing the solution can be developed from a direct study of
the variotional integral.

Although, the nature of the connection between the approximative solution
and the existence of the variational integral is an intriguing physical problem,
there have been several attemps to establish the variational technique in
dissipative physics.

Recently, Schechter [1], using the concept of Local Potential Theory
(Glansdorff-Prigogine method [2], [3]) has shown that the laminar boundary-
-layer problems in incompressible fluids can be treated with the help of
variational method. The variational method of Schechter has a considerable
mechanical significance, because the analitical studies of boundary-layer theory
is greatly handicapped by the nonlinearity of the governing equations. In many
practical cases the variational approach enables one to overcome the difficulties
in various nonlinear problems i. e. offers substantial advantages in some cases.

Although very succesful and useful, the Schechter’s variational method
in the laminar boundary-layers theory differs from the usual variational
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principles of ordinary mechanics. According to the Local Potential Theory there

are two kinds of physical variables (temperature T, velocity v, pressure p etc.)
the so called thermodynamic variables which change during the process of
variation on an integral, and the variables of the same type (7, v,, p, etc.)
evaluated at the stationary state and these quantities are not subject to varia-
tion. This dual personality of variables must be maintained until the process
of variation is complete. After that setting T,=T, v,=v, p,=p etc., yields the
correct differential equations of the process under consideration. (For more
details see ref. [1)).

It is easy to show that the Local Potential Principle is a variational
technique which is not subsumed by the classical theory of the calculus of
variations. In general, the type of procedure indicated by this principle violates
the principles of the classical variational calculus. The justification for this
method lies in its success, simplicity and scope [1].

The purpose of this note is to present a new variational principle for
laminar boundary-layer theory, without violating the classical variational cal-
culus. The description of the flow field by means of generalized coordinates
and partial integration technique enables one to describe boundary layer flow
by ordinary differential equations of the Lagrangian type. In the main body
of the paper the laminar boundary-layer in incompressible fluids growth along
the bodies with simple geometries is treated.

2. Variational principle

We consider here the laminar flow of an incompressible viscous fluid,
assuming that only small temperature differences occur so that the influence
of temperature on the density p and viscosity v may be neglected.

The governing differential equations of the two dimensional laminar
boundary-layer of an incompressible fluid are
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with the continuity equation for axially symmetric body
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for the plane case.

We will focus attention to the flow along the bodies with the boundaries
of the flow field

x=0; x=L; y=0 and y= oo.

The velocity of the fluid flow is specified on all boundaries except on the
curve x=L, hence the variation in velocity does not vanish at x=1L.
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Differential equations (1) and (2) can be derived from a variational
principle:
(4) 31=3 [[[ & dxdy dt=0
with the Lagrangian of the form:
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where [/ is a parameter which tends to zero after finishing the process of
variation. In addition the natural conditions at the boundary x=L must be
satisfied for the arbitrary variation of velocity ([1] p. 28):

dj-Su 03-8

s 14
T
0Xx x=L ox x=L

For the Lagrangian (5) after dividing with e/ one has
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Applying the Euler-Lagrange equations
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one has after dividing with ex/":
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one has immediately the equations (1) and (2) and the conditions (6) and (6)’
are satisfied automatically. Hence, a variational approach to the laminar
boundary-layer of an incompressible fluid is established.
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Since the variational principle does not involve either the continuity
equation or boundary conditions, a2 method for including the continuity equation
and boundary conditions is necessary. The method to be employed here is
based on the fact that in many physically important situations it is possible
to select the trial solution in such a form that the corresponding boundary
conditions and continuity equation are identically satisfied, and explicit use
of these conditions is not necessary. The same method has been employed in
ref. [1].

It would be very difficult to find a physical meaning for the quantity /
introdaced in (5). It is interesting to note, that in the heat conduction problem
a similar parameter has a clear physical interpretation.

It is well known fact that the governing equation for an intensive non-
-stationary temperature field is [4], [5];

(10) eT——+ oc——=k T

where T is temperature, T — relaxation time, ¢ — constant heat capacity,
k — constant thermal conductivity.

The differential equation (10) may be obtained from the Lagrange’s
equation for a Lagrangian of the form:

oT
(11%) = TC(aT)————( ) e,
2 \ot 2 \ox
If one wants to study the ¢classical® case i.e. when the relaxation time t
tends to zero, one obtains a situation similar to that in [5].

3. Applications to the plane steady laminar boundary-layers
in incompressible fluids

As an application of the previous theory we shall study the well known
problems of the plane steady flow in the laminar boundary-layer of an incom-
pressible fluids. The purpose of following examples is only to demonstrate the
feasibility and simplicity of variational method presented here. Needless to
say that this method may be applied to more complex problems of the bodies
with arbitrary shapes.

Let us consider the action integral:
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In order to get an approximative solution we will introduce a profile of
velocities # in the boundary-layer of the form:

(13) u="V(x- 4‘( ))+ ()E (f?x))’

* For the application of the Lagrangian (11) in classical heat conduction see ref. [6].
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where V' (x) is the velocity on the -boundary of the boundary-layer and f(x)
is some unknown function by the help of which one can describe the change
of velocity of profile across the body under consideration. The functions ®
and ¢ must be chosen in a form that satisfies the specific boundary conditions.

The form of the approximation (13) is familar, for many approximative
approaches in studying of the flow in the laminar steady boundary layers
(see for example ref. [7] and [8]).

For the profile u given by (13), the other component v may be found
from the continuity equation.

. . dv . _ .
We will focus our attention on cases when the termz—ls negligible, i.e.
x

when the bodies have a simple geometry, close to the flat plates. To be more
specific let us consider the velocity profile of the form:

(14) u(_x,y)=V(x)_-[l——e"f{_x)].
We will choose the boundary conditions in the form:
(15)! u=0 for y=0
(151 v=0 for y=0
(15)m u="v(x) for y—>oo
(1511 u="V(x) for x=0.

The profile (14) satisfies (15)! and (15)!! and if we assume that the function
f(x) hat the property that

15V f(©0)=0,
(15)1 jg gatisfied also.
Using (14) one has from the continuity equation (3)U
v 2 y - _df
16 Ve=—e|f—fe F—y |+ Vf (1 —e f—e~ ‘
(16) (e e (1= 7). (=)

where an arbitrary function C(x) has been specified using (15)!'. Employing
equation (12) and recalling that ({8] p. 21):

than, upon substituting eqs. (14) and (16) and integrating with respect to y:
L
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where prime denotes the derivate with respect to x. The number 4 has infi-
nite value, but it does not have any influence on following considerations.
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The function fx) in (17) can be selected such that the Euler-Lagrange
equation for this reduced variational problem is satisfied. Hence the equation

407 o7
dx of" of
in our case gives:
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where A=—<i+ilim7\>: A=
3 y—o S ()
It has been said previously that the parameter / has arbitrary structure.
In order to avoid uncertainty on the right hand side of the equation (18)
when A—oco we must provide that the parameter [ tends to zero faster than
A—>oo, if we put for example /=e¢* we will satisfy this requirement.

After finishing this limiting process one gets:
2 2
(19) Vi(L>+3Od—V (f)~ﬂv=0
dx\ 2 dx\2 5
for f£(0)=0. The solution of (19) is of the form

(20) £ =108y [ VB dx.

It follows that the form of the function f(x) depends upon the given velo-
city V (x).

The function f(x) has a simple physical meaning. According to ref. [8]
p.- 58, we will introduce the following characteristics of the boundary-layer,
using eq. (14)

(a) the displacement thickness

@1 3% — f(1~%)dy=fe—%dy=f(x),
0 0
(b) momentum thickness:

T u u T EEANE A fx)
22 = —(1——)dy= 1—e f)e fdy==—=,
- / V( ;) f ( e

0 0
(c) local shearing stress acting on the body:
(23) Tw:p.("_”> AN

0y/y=0 fx)
Using (21), (22) and (23) equation (19) may be written in the form:
kK

(24) do LAV swr s655%) —2,7 ",

dx |V dx pV?
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A similar equation has been found by T. von Karman [9] using the well
known integral method. This equation, the so called first momentum integral
is of the form:

TW

k%
MLy T

(25) ;
dx V dx\ pV?

and plays the role of a basic equation in the approximative study of the boun-
dary-layer. We will show that there are cases when the approximative solution
obtained by help of (24) is more accurate than those of (25).

For the profile given by (14) and using (21), (22), (23) Karman’s equation
(25) will give the differential equation:

2 2
Vi-(f—)Jrs‘fK (5 )2v=0
dx \2 dx \ 2

the solution of which is

26) Fe0 =2\ [ Vi

for £, (0)=0. ,
To be more specific let us consider two cases: (i) the laminar steady
boundary-layer over a flat plate, (ii) the flow which is characterised by the
external velocity
Vx)=C.-xm

where C and m are given constants. (The flow past an infinite wedge of opening

2
angle Br= mnj:; )

(i) Flat plate. For this case the external velocity is of the form

V (x)=const.=U.
Hence, from (20) one has

27) f(x)~3,28 \/Lx
pU
The profile of velocity is
u
28 —=1—g 03047
(28) U
where -
-
BX

The same problem was solved through the help of numerical integration by
Howarth [8] p. 29.
It will be convenient to introduce the local friction coefficient in the form:

Crmp
—oU
5P

(29)
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Using (23), (28) and ¥'=U one has

0
(30) c,= 2508
VR,
where Re,;=-)i]is the local Reynolds number.
v

Applying the solution of the Karman equation (26) one has
1

31 C,=——.
( ) J VRex
For the same problem the following results are known Howarth and Blasius:
Cf=9’664 Nikuradse ref. [10] (experimental): C .= M Karman — Pol-
VRex ex
0686 ; Schechter ref. [1]; Cf=2'—7g.

(ii) The flow past an infinite wedge. For this case the velocity distribution
is of the form

(32) V (x)=Cxm; m, C = const.
Substituting into (20) and integrating one gets

(33 X \/ —
3) f(x)=,/10,8C! 29 5
Using (14), (32) and (33) the velocity distribution is
u
34 =1—eEm%,
(34) Com
with
1
(35) Km=(—%9—’£i—) 2
54m+5,4

N

For the same problem the solution (26) obtained using the Karman equation is

(36) fe)= 2\/_ L

Table 1 shows a comparison of the velocity distribution given by (34) and
corresponding results obtained by HARTREE ([8] p. 68—69).

For B=0,1 (m=0,052) the skin friction on the wall is, according to
Hartree [8] p. 71:
7,=0,424po 3 x3m-1,
Using (23), (33) and the same value for m we have
T, =0,480)/vp c3x3m-1,
The solution (36) obtained using the Karman equation and (23) yields:
,=0,581)pp c3x3m1.
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Using (21), (33) and (30), for m=% we have the displacement thickness

% = 1,005 | Y 213
Ve

The Karman integral method gives

s*=1,13\/Lx2/3.
[4

The exact solution is [8] p. 72

5* = 0,985 \/L X2
(4

Discussion

In this paper an attempt was made to apply a variational method to
the theory of the laminar boundary-layer of incompressible fluids using a
Lagrangian. The basic rules of variational calculus are preserved. A cha-
racteristic of the present method is that there exists a parameter which tends
to zero after the process of variation is complete. The physical meaning of
this parameter is not clear.

The approximative method presented here can be applied directly and
this approach offers the substartial advantages of being clear cut and simple.

Agreement of the results of the present method with the exact solutions
and other results is seen to be quite satisfactory. This fact confirms the
physical ground of the variational principle described here.

This method may be also applied to more complex situations of non-
-Newtonian fluids flow, nonstationary flow etc. An investigation corcerning
these problems will be reported on elsewhere.
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LIST OF SYMBOLS

x — the distance along he solid surface measured from the stagnation point or the leading edge.
y — the normal drawn from the surface towards the fluid,

u, v —components of velocity in x and y directions

t — time,

p — density

r — the radius of curvature of the cross section line of the body,
p — pressure,

v — kinematic viscosity,
L — characteristic length of the body,
@ — viscosity.
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