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The aim of this paper is to show that the Léwenheim and Schoder-Poretski-Itoh
theorems on Boolean equations can be subsumed to a more general result on reproductive
solutions of Boolean equations. The latter theorem, in its turn, can be deduced from a
property of certain functional equations, established by Presié.

*

Let S be an arbitrary set and C(x;, ... x,) a condition or a system
of conditions of an arbitrary nature upon the variables x,,..., x,&S. A
vector (x, ..., x,)&S? fulfilling the condition(s) C is called a solution (or,
particular solution) of C. A system of mappings ¢;: S*—S (i=1, ..., n) is said
to define the gemeral (or, parametric) solution of C, if the following two con-
ditions are fulfilled:

(i) for every (py, ..., p)ESm, the vector (o, (D1« > Pu)s oo s P (P15« + - 5 Pu))
is a solution of C;

and conversely,

(if) every particular solution (x;...., x,)&.S8% of C can be written in the
form x;=@;(py, ..., pp) (i=1,..., n) for suitably chosen p,,..., ppES.

If condition (ii) is replaced by the stronger property

(iii) every particular solution (x;, ..., x,)ES® of C fulfills x; =¢; (x{, . ., Xu)
(i=1,..., n), then the general solution is said to be reproductive.

S. Presi¢ [6] proved the following

Theorem 0. Let S be an arbitrary set and ¢;: S*—S (i=1,.... n).
() The system of equations
H X, =0, (%, ..., Xp) (i=1,...,n

has the general solution

(2 X =@ (P> -+ Pu) (i=1...,n
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if and only if the identities

Pe (P (X1s ooy Xp)s oves QX oon s Xp)) =
3

are fulfilled.

B) If relations (3) are verified. the general solution (2) is reproductive.

The proof is very simple and will not be reproduced here. Several inte-
resting applications of this theorem are given in the quoted paper and it is
the aim of the present article to add to these applications, new proofs for the
theorems of Lowenheim and Schréder-Poretski-Itoh (Theorems 1 and 2, res-
pectively) as well as a common generalization of them (Theorem 3).

=@ (%, ... s Xp) (i=1,...,n

*

We assume that the reader is familiar with the elements of Boolean cal-
culus and we only recall a few definitions.

Let <B, UJ,.,’, 0,1> be an arbitrary Boolean algebra. A mapping
f:B"—B, is said to be a Boolean function, if it can be constructed from vari-
ables x;, ..., x, and constants of B by means of superpositions of the basic
operations {J,.,”. An equation (inequality <) involving only Boolean func-
tions of the unknowns x;, ..., x,, is called a Boolean equation (inequality). As
is well known, any system of Boolean equations and/or inequalities can be
reduced to a single Boolean equation of the form f=0 or, if preferred, of the
dual form f'=1.

In the sequel, we shall need the following
Lemma 1. Any Boolean function f: B*— B satisfies the identity
fqzUnz, %202, ooo s Xp2Upnz’) =

2Zf(x1, veey xn)Uz’f(yl’ vesy .Vn)

Proof. For fixed x;, ..., X4, Y15 ..., Yo & B the function in the left-
-hand side of (4) becomes a Boolean function g(z) and relation (4) reduces to
the well-known identity g(z)=zg(1)Uz"g(0).

We have now established all prerequisites necessary to prove theorems
1-3 below.

@

Lemma 2. Let (&, ..., £,)&B® be a particular solution of the Boolean
equation

%) Sy .. x,)=0.

Then (5) is equivalent to the system

(6) Xp=Ef (Xgy o ovy X)UXS (15 o0ty Xp) (i=1,..., m.»
Proof. Setting

(D g(xs e s Xn): =Eif 0 ovn s X)UXS X1y oo X)) (@=1,..., n),

¥y £ (X35 0005 Xp) stands for [F(x ... X))
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we have to prove that equation (5) is equivalent to the system

(8) Xe=8: (X5 ovv s Xp) (i=1,..., n).

But (5) implies obviously (6), i.e. (8). Conversely, it follows from
Lemma 1 that

flgrs s 8V =fCrs-nvs Ba)f(xps ooy XR)U
Uf X eee s Xp)f (s ovoy X)) =0,
i.e. (8) implies (5), completing the proof.

Theorem 1 (Ldwenheim [3], [4]). Let &,, ..., E,)SB? be a particular
solution of the Boolean equation (5). Then

(10) xi:aif(pl"-" Pn)UPtf’(Pl,---’ Pn) (i=1,..., n),

where p,, ..., p, are arbitrary parameters in B, define the reproductive solu-
tion of (5).

)

Proof. It follows from identity (9) that the functions (7) satisfy the
identities
(11) 88 -v s En)=CiS (&1, .. 8R)UES (815 -+ s En) =2

for i=1,..., n. Hence, by Theorem 0, the system (8) has the reproductive
solution x;=g;(py, ..., Pu) ({=1,..., n), which is precisely (10). But (8) is
equivalent to (5), by Lemma 2, thus completing the proof.

*

In the sequel we denote by-+the symmetric difference x+y=xy'Ux"y
and we shall make use of the group properties of this operation.

Theorem 2 (P. S. Poretski [5], E. Schroder [8], M. Itoh [2]).
(a) The Boolean equation (5) is equivalent to each of the equations

(12) Xe=f (X150 Xp)+ X4 (i=1..., n.
(b) Equation (5) has the general solution
(13) xi=f(P1,---aPn)+Pt (i=1"°" n)

if and only if
149 f(reees @)/ (@iree s ) =0 (Vay, ..., o €{0, 1}CB).

(c) If relations (14) hold, the general solution (13) is reproductive.

Proof The first statement is trivial.

It implies that equation (5) is also equivalent to the system of n equa-
tions (12). Therefore, setting

(15) By onn s Xp)i=f(s ovv s Xn) 4% (i=1,..., n),
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we still have to prove that the system x;=h;(x;, ..., x;) (i=1,..., n) has
the general solution x;=/h(p,, ..., p,) (i=1,..., n) if and only if relations
* (14) hold; and if this is the case, the solution x;=h; (py, ..., pp) (i=1,..., n)
is reproductive.

Comparing this statement to Theorem 0, we see that it suffices to prove
the equivalence between the conditions (14) and the identities

(16) hi(hye ooy hy)=hy (i=1,..., n).
But, using Lemma 1, we get the following identities:
Sy ) =fafOXS s ooy Xf Uxnf)=
=f(x;, e x;)f(xl, e XU -, x,,)ff(xl, ey xn)=
=[G XDy s X,

hence
Bihy, ooy ) =F(X1s ooy XDF (K evn s Xn) R (Xps vy %)

therefore relations (16) hold if and only if

%)) FG, o x)FGe, -, xg) =0

Now the Lowenheim Verification Theorem [4] states that relation (17)
holds identically if and only if conditions (14) are fulfilled, thus completing
the proof.

Comments. 1) Equation (5) may not have the parametric solution (13),
even if it is consistent. For, as is well-known (see, €. g. [9] or [1]), the neces-
sary and sufficient condition for the consistency of (5) is

(18) IT  fle, .o an)=0,

L 1

which is a property weaker than (14).

(2) Conditions (14) and (18) are equivalent only for n: =1, when both
of them reduce to f(0)f(1)=0. In this case the function f can bz written
J(x)=axUbx', so that h(x)=xf'(x)Ux f(x)=x(@ xUb x)Jx (axUbx')=
=a’'x\Ubx". Thus we obtain the following

Corollary 1. The Boolean equation ax\Jbx' =0 is equivalent to the
equation x=a' x\Ubx’. It has the general solution x=a’ pUbP’ if and only if it
is consistent. If this is the case, the above solution is reproductive.

P. S. Poretski [5] proved that equation x—ax\Jbx’ is equivalent to the
double inequality b < x < a, while E. Schréder [8] showed that equation ax\_bx’ =0
is equivalent to the double inequality h<x<a'. From these results we can
immediately deduce the above Corollary 1, which could thus bz called the
Schroder-Poretski theorem. As a matter of fact, this property has been expli-
citely stated e. g. by L. Couturat [1]. oo
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3) Using the disjunctive canonical form of a Boolean function and the
notations x°=x', x!=x, we can give another form to the functions (15),
namely

’
By (xg, ooy Xp)=X: (1, ooy X)UX S (g5 o0 oy Xp)=
= x; U Sy, ooy ag) X1 ... XU
Ay, veey 0p 10,1}
Ux; U o, oy )X ... Xy =
Wy eens anE(0, 1)
= U S, ooy a) Xt L xU
Agy ves ap {0, 1}
ai=0
U U P CTE 7 B I A
%, ...y ap&{0, 1}
oi=1

for i=1, ..., n, that is
19 hi (X, «ony Xp)= U L (o, ooy a)]xit ... X328
) Ay ooy Op < {0, 1} }
@i=1, ..., n),
which is the direct generalization of the form A (x)=a’"xUbx'=f" (1) xU f(0) x’
corresponding to the case n: =1. As a matter  of fact, M. Itoh [2] considered
an equation f=1 and obtained the function A; in the form corresponding to

(19); unlike our proof, Itoh’s demonstration is direct and somewhat more
technical.

*

The above theorems have the following structure in common: a system

of n Boolean functions k;(x,, ..., x,) (i=1, ..., n) is given, such that, under
certain conditions, equation (5) is equivalent to the system
(20) xp=k; (%, ..., Xp) (i=1, ..., n

and has the general reproductive solution

20 x;=ki(D1s -+ Dp) (i=1, ..., n

Notice that the latter property is stronger than the former, i.e.: if (21)
is the reproductive solution of (5), them (5) is equivalent to the system (20).
Thus Theorem 1 is stronger than Lemma 2, while Theorem 2 shows that (5)
is always equivalent to (12)*, but may not have the reproductive solution (13).

We shall now generalize Theorems 1 and 2, determining necessary and
sufficient conditions in order that formulas (21) bs the reproductive solution
of equation (5).

To do this, we need the following.

Lemma 3. Let f, g BB be Boolean functions and assume that at
least one of the equations f(x;. ..., x,)=0, g(xy, ..., Xx,)=0, is consistent.
Then the two equations are equivalent if and only if f=g.

* In particular they are simultaneously consistent or inconsistent.
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Proof. The sufficiency being trivial, we have only to prove the necessity.
Thus we assume that equations f=0 and g=0 are equivalent; it follows from
the hypothesis that they are both consistent. Since f=0 implies g=0, a result
of L. Lowenheim [4] (see also S. Rudeanu [7]) states that g<f holds identi-
cally; similarly f<g, completing the proof.

Theorem 3. Let the Boolean equation

(5) f(xl, [P xﬂ)=0
be consistent. Then the parametric formulas
21) xe=ki(pys <., D) (i=1, ..., n),

define the reproductive solution of equations (5) if and only if the functions k; are
of the form

22) ki(xy, ooy X))l =f00, ooy Xp)zi(Xy, ooy Xp)4xp (=1, ..., n),

where the functions f, z,, ..., z, satisfy the conditions

23) FGr s ) =f s o @) Uz, oo ),

Q) flogy voes ) floy+2(0y, ooy Xg)y vnny O +HZu(0ty, oo, 0))=0,
Jor every oy, ..., a,&{0, 1} CB.

Proof. According to the remark bzfore Lemma 3, it is necessary that
equation (5) be equivalent to the system

(20) xe=kg (X, oo oy Xy) @i=1, ..., n).

We shall first determine necessary and sufficient conditions for the equi-
valence between (5) and (20). To these conditions we have to add necessary
and sufficient conditions in order that the system (20) has the reproductive
solution (21); the complete set of conditions obtained in this way will solve
our problem.

Since (20) may be written in the form of the unique equation

n

(25) :91 (g (xy5 -y Xp)+x7)=0,

Lemma 3 implies that (5) is equivalent to (20) if and only if the identity

(26) A C PR x»)=H(k¢(x1, cevs Xp)+Xg)
holds. Therefore, the inequalities
27 ki(Xyy ooy Xp) b Xe<f (%15 o005 Xp) (i=1,...,n

are identically verified, hence there exist n functions z;. ..., z,:B"—>B such
that relations

(28) ki(Xgy ooy Xp)FXe=24(%0, ooy X)) (X5 ooy X)) (=1, ..., n),
hold identically.
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We have thus proved that the functions k; are of the form (22), while
(26) becomes

(29) Sy oo Xp)=f x5 .-y xn)'_L_lei(xl’ ees Xn);

the identity (29) is thus the necessary and sufficient condition for the equiva-
lence between (5) and (20).

It remains now to find necessary and sufficient conditions in order that
the system (20) has the reproductive solution (21). In view of theorem O, this
is the same as finding equivalent conditions for the identities

30) kitkiy, ooy kn)=k; (=1, ..., n).
To facilitate computations, we shall use notations like X=(x;, ..., X),
Z=(Zy(Xgy vovy Xn)s ooes Zn(Xys vvvs Xp))y X+Z=(x3+23(Xps <oy Xp)y -1 v

Xp+Za(xy, -+, X)), etc. Then, taking into account (22) and Lemma 1, we
deduce successively the following identities:

ky=x fUx(f' Uz)= (o' 2Uxi 2) f Ux f' (=1, ..., m,
SEY=fkrs o5 ka)=fCer+2)fU XS5 ooty (nt2za)fU Xaf )=
=f(X+Z)f (XU f(X)f" (X)=f(X + Z) f(X) (=1, ..., n),
2y (K)=zi(ky, oo, kp)=ze(3,+2) FU XS ooy (Bnt+2a)f UXaS')=
=z (X +Z2)f(X) Uz (X)f' (X) (=1, ..., n),
ki(R=ki(ky, ..., kn)=f(K)z;(K) +k¢=
=XV X+ZDyz (X +Z)+ kK @i=1, ..., n).
Hence the identities (30) are equivalent to
(31 S X+Z2D)z;(X+Z)=0 (=1, .... n)
but the system (31) is equivalent to the single identity

(32 f(X)f(X+Z)iL=J12¢(X+Z)=0

which, in view of (29) applied with X =X +Z, reduces to
S (X +2)=0,

or, explicitely,
(33) Sy ooy Xp) O +20(x0, s Xp)y ooy XptZp (X, o0 vy Xp))=0.

Summarizing, we have found that identities (22), (29) and (33) are the
necessary and sufficient conditions in order that the equation (5) has the rep-
roductive solution (21). In view of Lowenheim’s Verification Theorem, (29)
and (33) are equivalent to (23) and (24), respectively. This completes the proof.

Remark. It may be easier to verify directly the identities (29) and (33)
rather than (23) and (24). See e.g. Comment 1 below.
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Comments. 1. Let £, ..., £,) be a particular solution of equation
(5) and take

(34) z,(xl, PN xn)l=x5+§,i (i=1, ceay n).
Now consider the equation
(35) U (v +8)=0

and notice that it implies (5), for the unique solution of (35) is x;: =&,
(i=1, ..., n), which satisfies also (5). Therefore, in view of Léwenheim’s lemma
quoted in our Lemma 3, the inequality

n .
(36) » FGrs ooy mmy< U Gt _
holds identically, which means that foziy ooy 2z, fUlfill (29). On the other hand,
37 fOa+zy, ooy Xp+2e)=fE - .5 E))=0,

so that identities (33) are fulfilled too.

We are thus in the conditions of the above theorem. For this choice of
the functions z;, the functions k; become

Cki=xi A8 f=x S+ E =X f UGS (i=1, ..., n),

i.e. we get Theorem 1.
2) Take _
(38) Zi(Xge ooy Xp)i=1 (i=1, ..., n).

Then relation (23) is verified, (24) reduces to (14), and the functions (22)
become (15), so that we get Theorem 2.

3) A necessary and sufficient condition for the reproductive solution of
a Boolean equation was first given in [7]. This condition is much more comp-
licated than (though certainly equivalent to) the condition given in the present
Theorem 3.
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