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SOME THEOREMS ON THE FIXED POINT IN LOCALLY CONVEX SPACES
O. HadZzi¢ and B. Stankovié

(Communicated March 21, 1969)

The intention of this paper is to show that the theorems on the fixed
point in locally convex spaces given by A. Deleanu and G. Marinescu [1] can
be proved under some less restrictive conditions. Afterwords we shall apply our
results on differential equations for Mikusinski’s operators [3].

A. Deleanu and G. Marinescu proved the following theorem:

Theorem A. Let ¢ be a locally convex space sequentially complete, .4
be a saturated family of seminorms defining the topology of ¢, ¢ a mapping

of A into A such that ole(w)]=0(x) YaC A, [ be a subset closed in ¢
and T be a mapping of /[ into JJ[ satisfying the following conditions:

1. For every a¢= /4 there exists q,>0 such that
|Tx—Ty’a<qalx—‘yl<P(m)’ Y x, yEJZ

2. go<l for every aC  A.

Then T has in /][ a unique fixed point.

These authors also generalized a theorem of M. A. Krasnoseljski [2]
profiting from the theorem A4 and the well known Tychonoff’s theorem. In the
proof of both theorems they used the supposition ¢[p ()] =¢(x) which is an
unnatural restriction. Moreover, the appication of these theorems in the theory

of differential equations of Mikusinski’s operators showed that just this restric-
tion must be relaxed.

That is the subject of this paper.

1. Theorems on the fixed point

First we shall give some notations:
Let & be locally convex vector space sequentially complete;

171, «cF be a saturated family of seminorms;
o/l be a subset of ¢ sequantally complete;

T be a mapping of /] into /f.
Theorem 1. We suppose:

1. For every a &F there exists q,>0 such that
I Tx—Ty|°¢<q°‘|x—y Lp(a), an J’G—_c/z
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2. For every aCF there exists n, such that for n>n, we have Geney<
<g{a)<l. ‘
3. There exists x,C,/f[ such that for every a = F and n>0

| Xo—T%y |eny<p(@)< oo, @°(a)=a.
Then there exists one and only one solution of the equation x = Tx which
also satisfies the condition:
4, | x—xy|en@<p(et, X)<o, n>0.

Proof. — We shall construct the sequence {x,}C./[ in such a way
that x; = Tx;; with x,&,/[. This sequence is a Cauchy sequence:

]xn“xn—l laz I Txp1—Txp—y |a<‘1a l Xp—1— Xn—2 ,cp(oz)

<Gado@ | Xn—2—Xn3 |2

1)
n=2
> H Do () [xl—xo l@”" ()
i=0

<(ﬁ qw‘(a)) g2~ (@) p(«), for n>ny+2.
i=0
Using the obtained inequality we have for n>n,+ 2:

m
lxn+m“'“xn|a< Z [xn+1_xn+i—1 {a

i=1
Ry m .
<T] %oiw 2, 9"+ 2" (@) p (@)
i=o i=1

1

<”(°‘)< —q(@

9i () ) g1 (o)
i=0

H

From supposition 2 it follows that x; is a Cauchy sequence. Let xC /] be
its limit, then x is the required solution:

| x—Tx o< | Xx—Xp |0+ | Xp—Tx o
<[ x—%n |t Gu| X1 =X | g (-

When n—o, we have |x—Tx|,=0 for every a7, and consequently x= Tx.
Now we shall show that x also satisfies condition 4.
From relation (1) it follows for k>n,

n—2

| Xn—Xn—1 |k @ < T goxri | Xi—o [ontk—1
i=0

<¢" () p(x)
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and

().

1
| Xn—X |k () <——P
v 1—q ()

When n— o0, we have:

[ x—xo |k (0 < p(@), k>n,.

_
1—q(e)
Now without difficulty one can show that condition 4 is satisfied.

Finally, we shall prove the uniqueness of the solution in ,/{ which also
satisfies condition 4.
Let on the contrary, x and y be two solutions of the equation T'x = x then:

| x—p o= Tx—TY]|«<qu | X—V |00

Ry
< ( H qwi(oc)) g " () Ix'"y Icp"'*“(a)
i=0

< ( 1:1 qepi(oo) g~ (x) [p (o, x)+p( )] g™ (0).

When n—> oo, it follows that |x—y |,=0 for every a €7, and consequently x= y.

Theorem 2. We suppose:
1. For every aCF and k& </ there exists q,(k)>0 such that.

| TEx—Tty|,<qu (k) | x—V Jo@ms VX YCS
and D 9.(k)<oo.

k=1

2. For every o F and x, yC /f[ there exists 0< p,(x, y)<oo such that:

ix_y|¢(a:,k)<pa(x’ y)’ k>1.

Then there exists one and only one solution of the equation x=Tx in /.

Proof. — Let us construct the sequence {x;}C.// which satisfies the
relation x, = Tx,—, starting from an element x,E /. This sequence is a Cauchy
sequence:

First we have:
| Xn—2Xn— |a=] T2y — T 1 X, |a
< qu(n—1) | x—x, 1q>(oc,n—1)

<qx (n_ 1) y 24 (xl ’ xo)
and

m
Xntm— Xn |a < z |xn+t'—xn+i—1 Ic:
i=1
nt+m—1

< P (%1, X0) z 9. (7).

i=n
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We know that the series z g, (k) is convergent, consequently Z g. (k) is a

Cauchy sequence. By the last relation the sequence {x;} dlso 1s a Cauchy
sequence. Let x&/f/ be the limit of the sequence {x;}, then x is the required
solution:

| Tx—x o <| TXx—Xp1 |a+ | Xpt1—X o

<g.(1) !x“’“xnlv(a,i)‘*“}xnﬂ‘“x}w

Since (Tx»—-x{m—>0 as n—oo for every a CF we have Tx=x.

Now we shall prove that this solution x is unique, Conversely, assume
that x and y from ./ are two solutions which satisfy condition 2, then

}x»-y}“ml Tkx“TkyId<qa(k) ix—ylap(c:,k)

< qu (k) pa(x, ¥)-

Since ¢y (k) —>0 for k—oo, |x—y|,=0 must be true for every a7,
consequently x=y.

A different kind of these theorems is a gineralization of a theorem of
Krasnoseljski.

Theorem 3. Let ¥ be a closed and convex subset of the topological,
Hausdorff locally convex, complete space & and S, T two mappings of .5 into &
satisfving the following conditions:

1. For every x, y& ., Tx+Sy& .5,
2. T satisfies conditions 1 and 2 of theorem 1 for JJ[=.F,
3. S is continuous and S.F a relativelly compact set,

4. For every aCF, there exist m,>0 and B,CF such that: | x|ok@ <
<my|xlp, VxEG and k=0, 1.2, ..

Then there exists at least ome poimt x,=,F such that Sxy+ Tx,=x,.

Proof. — Let x be a fixed element of ¥ . The mapping: y—Ty+ Sx
has the unique fixed point in 5. Indeed, since T satisfies conditions 1 and 2
of theorem 1, the same conditions are satisfied by the mapping y —Ty+ Sx
in % . Also, by condition 4 of this theorem, conditions 3 and 4 of theorem 1
are satisfied. This also implies the uniqueness of the fixed point y=Ty+ Sx.
To obtain this fixed point, we can start from the sequence y, which is con-
structed in such a way that y, = Ty, + Sx. The first element of this sequence, y,,
may be any element from % . Consequently it does not depend of x. Now
we can’ define the mapping R which maps ¥ into .¥ and to every x& .7
corresponds a fixed point of the mapping y->Ty+ Sx, namely Rx=TRx+ Sx.
We shall show that the mapping R is continuous on % .

By proving theorem 1 we have established the inequality:

1
@ | x—%g ok < ———p (), k>n,
1—g ()
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where x is the fixed point of the mapping 7, considered in theorem 1, and x,
is the first element of the sequence {x,} which converges on. x. p () is intro-
duced by the inequality:

| %o— T lonimy < p (&)< o0

of supposition 3., theorem 1.

We will apply this to our mapping: y->Ty+Sx. By definition, Rx is the
unique fixed point of this mapping, and can be obtained as the limit of the
sequence {¥n}, Y= T¥n— +Sx, where it does not matter which the first element is.
For the first element y, let us choose just Rx,. By supposition 4 of our theorem
for p(x) we can take p(«)=my, | Rxy—TRx,—Sx|g¢. Then the inequality (2)
in this case is:

| Ri— Ry | gy < | Po=Tyo—SX g _ M| TRX, +Sx%y— TRy~ Sx [5.0)

1—g () 1—g ()
my, ' Sx—-—Sxo [ﬁ(“)
1—q ()

because Rx,=TRx,+ Sx,.
Now it is easy to prove that R is continuous:

| Rx—Rxy |« < gx | Rx—RXg gy + | Sx— 5%, o

< G {9 | Rx—Rx, lo2 @ + l Sx—8x, !:P(fx)} + i Sx—S8x, Jioc

Sado@: " -q@,,a_;(u)]Rx—- °ia>”°‘{a)+
”a—l je1 [
+ > (]’I q¢v(a))in—Sxolmf(a)
i=0 v=0
< H 9oi (@) 1—g(a )lsx'—Sxolﬁ(a)+
Ro— i=1
> (H M m) Sx— 5%, |sicar
by the supposition 4 of our theorem we have:
ny—1 1 ne—1 ;.1
<ma§5x“‘5’xofs(a){ H %t(a)l @ Z H cp“(a)}
i= - i=0 v=0

The continuity of R is so a consequence of the continuity of S.
We shall prove that R, is precompact; (R.¥ is precompact if its comple-

tion R, is compact). The necessary and sufficient condition for the precompact-
ness of a set /[ is that for every neighbourhood 7/ of zero, there exists a finite
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number of points x;Co/ff i=1, 2, ..., n, such that f{C U (x+7/). Let / be:
i=1 .

U={y:|y]|a<<e, yE&}. The set §.F is by supposition 3 relatively compact, i.e.
S.7 is compact. We know that the space ¢ is complete. It follows that S, %~
is precompact.

Let 4 be the neighbourhood of zero of the form:

1 ”a“‘l ny—1 4.1 —1
,%:{ Hxle@m<— [”—‘“‘“‘”—‘ Goi@ + z HQ!@] }

I—Q( ) i=0 i=0 v==0

Then there exists a finite number of points x;&. % such that S. % C U (Sx; + ).
i=1
This means that for every xej' there exists i€ 1, 2,..., n such that

1 "l re—1i1 —1
]wanglg(a)< [‘“‘“‘““ IT e+ 2 T1 qqpv(a)]
1—g () i=o =0 v=0

Whence, as in (3) | Rx—Rx;|.,<e, ie. R;TCU (Rx; +7/) which had to be
i=1

proved.

We know now that R.¥ is precompact. On account of the completeness
of ¢, R.F is compact. Let K be the closed and convex envelope of R.7 .
Since ¢ is complete, hence K is compact and we have R.F C K C.F . Conse-
quently RECK. So, the set K and the restriction of R over K satisfy the
conditions of Tychonoff’s theorem [7]. That means that there exists x,&XK
such that Rx;=Xx,, i.e. Xy=Txy+5x,. '

2. Application in the theory of operator differential equations

We shall show the apphcatlon of theorem 2 on differential equations in
the field H of Mikusinski’s operators [3] in the case when the conditions of
the cited theorem of A. Deleanu and G. Marinescu are not satisfied.

Let € be the commutative algebra of complex-valued functions defined
and continuous on the interval {0, c]. The sums and scalar products are
defined m the usual way and the product is defined as the finite convolution

( ( f J—-u)gu) du)) € is an integral domain under convolution and its

field extensxon is the field 9{ In 9'{; the limit, differentiation and integration

are defined. The field K con51sts of ,,convolunon quotlents“—f— where f, g€
. g

and g+#0.
We shall let f={f(t)} denote the representatxon of f(¢) in € s the dlffe-
rential operator, / the integral operator and [ the unit element, s°=1.
Furthermore, we denote by F,(t)=1-7"1®(—p, —c; —17°) 0<o<],
p>0, F,=F, where ® is the known functlon of E. M. erght [8]. This func-
tion can be written in the form o . . .

7, (t)"“"—‘ f zvexp (tz-~z°>dz, 10,

e
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This function is continuous for #>0. Its properties which will be used
here- are:

p+1 p+1
L |Fp(t)|<Qh ° (p+1) o, @ and h are constant

2. sﬁF(2°t 2° M(ZG:)

3. F, <2°t) S <2k_:—lt *F, 21%1t)-

For the function F, we introduce the followging notations:

Fpi=F, (2% t) and F=F,.

Let F be the interval [0, A] and R* the set of non-negative real numbers.
Every element w(}, ) from the set € (FxR") (continuous functions on
F x R+) defines a mapping of F into €(R*):A—>w M) ={w(}, t)}. The set of
all these mappings is noted by ‘@. In € a family of seminorms is defined:

vp(@()= Max |o(, 1)
(\ EDK
where D;: O<A< A, O<t<k.

€ is complete.
Let us consider the mappings of “the interval 77 into the field %X which

are of the form wg\) and for every k ‘there exists a wk(l)eé such that
%x):%iﬁ)” A=F The set of all these mappings is noted by €* (»). This
0.k

set is not empty. The set @ above all belongs to it.
‘ In @*(3) a family of seminorms is also defined. For 7 wee* ™) we have

H")O‘)“Ic,mz Max IFo,k")(l)lz\‘m(F,k")(k))-
, )Y&EDm .-

If n(\)EC, then
” n() ||k,m<m Vi (Fb,k) Yo (0 (A))-

For every fixed k this family of seminorms is saturated; that is a con-
sequence of the theorem of Titchmarsh.

The set @*(\) is sequentially complete. Since it has a countable family
of seminorms it is also complete.

To show this, let n; (7\) be a Cauchy sequence of C*(}) i..

“"ln()‘)_"lmp (M”k m=m (F%, Mn(l)—F,an *) =0, n-—>oo.

In this case F, ;n,(A) is a Cauchy sequence in € and @ is complete. Let
or(NEC be its limit. For a fixed k the limit of the sequence n,(2) is
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. A
%Q\l We shall show that @) belongs to the set €*(}), ie. 0, (W) F, p=
0,k 0,k
==wp(l)l%,k.

We know that 7, () E€* (1), hence 7, (1) = Z2E »

s Yu, kW EC for every

ok
k and » natural numbers. Since v, (x)-»‘fﬂ)ﬁl we have:
0,k
oz (A
Nn (x).—_’“_(.l ‘l =V (Y () — 0 (A)) > O
. Fo,’c l!k’m

for every m and k as natural numbers. Using this fact we can show that:
[l ) Fo, p —wp (A Fo e lle,m<|| 06 ) Fo, p—Fo,p Fo, k1 W) [, +
+ || Fo, p Fo, ke W) —p M) Fo, 1|k, m
<MV (Fo, p Fo, 1) Vi (0 M) =Y, (V) +
+ 10y (5, 1) Vi (@ () — P, p (1)) > O

when n-—>o0 and k, m, p are natural numbers.
Let us consider the differential equation

“ M=o x®), xO=LIL

where @ (\)& €. This equation is equivalent to the integral equation:

A
%) x(7\)=l+fs5co(u)x(u)du
0

We shall apply theorem 2 to equations (4) and (5) respectively and we
shall see that it has its unique solution when B<2 [4].

For the space E we shall take the space €* (\) and for 4 the set [/ {0}]

Let of/* be the set whose clements are the finite sums X s8 o (2),

. A1 M)

o (M)EEC and o (A, t)}<},7—~(17;—1)—§-” where vy, (0 (A)) < M,,.

The operator T is in our case

2

Tx=I+fs‘3co(u)x(u)du

and it maps . /f[* into ./f/*, which is easy to control. This operator is also
continuous, because:

ok A
17515 Jm=vm (27 Pt [ 00 @)=y @] )

Bk+B+k+2
< AMpmv(2 T Fyper) v (B g [E )=y OO
Bk+k-+B+2
<,mAMm2.. av Ym (Fa.kﬂ) ” x,(}‘)_y ()\) ”’k-r'l,m
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Let us complete the set . //* with the limits of Cauchy sequences and we
shall obtain the set .//. These limits exists because *(A) is sequentially
complete.

We shall show that condition 1 of theorem 2 is satisfied. Let T} be the
homogeneous part of the mapping T, then

| T x=T%y | ,m= | T4 5—2) ||, m

kS At Mg m
=l J"’ M) dny f oA)dr,- - - f o (Ae)) s*% [x Q) —y Q)1 d 2 [, m
1] 0
PRk A ’ M1
© =2 Forp [00)dh- - [ o0 [x0—r Ol dh)
0 (4]

pRk+BEk+p+2 A Me—t
<2 L] mv,,,(Fﬁk,pﬂ fm()\l)d)‘l"'f (x)()\k)d)\k>x
0 0

X Vg (Fo, p11 [X ) =Y QD =, m B [| X—¥ ||, 21

It is now necessary to prove that

PBA+B kP2 A Mot ‘
Gom@=2 o mvm (Forpn [0@)dN- - [ 0@ dk)
0 [

has the role of g, (k) from theorem 2.
Utilizing property 1 of the function F,(f) we have

pBk+Bk+p+2 B+l ' B+l prk A ke 6
Ip,mk)<m2 ° Qh ° Bk+1) ° %“O(H"k(z_z)k>

When B<2, we can choose o, 0<<o<1, in such a way that 2——~—B— >0, and
e}
condition 1 of theorem 2 is satisfied.

With regard to condition 2, it is certainly satisfied, because ¢ («, k) in
our case does not depend on &, one can see it from the inequality (6).

The same theorem is also applicable to a system
m
Q) W)= @, M)x@), i=1,2 ..., m x0)=I
Je=1

which is equivalent to the system of integral equations

Aom
(8) ) =I+ [ Zl(az,j(u) X,y du, i=1,2,....m

¢/~

or in the vector form
A
©) E@Q =T+ [ A()E ) du
g

2 Publication de I’Institut Mathématique
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where A (2) is -the matrix (a;, ; () of the type m x m: with the elements a; ; (\) =
%sﬂi’f o, MNEE* (D). £() is an element of the product I’f{ €*(») in which
the algebraical and topologycal structure are defined in the usual way.
The family of seminorms in fiI C* () is:
Np,q &) =Max (| x; ) || ,q> f| X2 )]
Let A* be the product of k matrix

Ak = (a;, i (M) (a, i ) - - (a, i (M)

The common element of this matrix is noted by

v - | Xm W) [, 0)-

Bk 4
afj(ll, cee 7\k)=S "J(x)i,j(;\l, ceey )‘k)

k
B85 &
— 5B ] BNy oo v s M)

k
where B (k)= Max Bf;. The operator I°®%i

1<, j<m

a continuous function on: O0<A;, 2, ..., < A O<t<oo.

Fwf (A, ..., A is defined by
In this case the operator T is:
A
TE=J+ [ A(W)E (u) du
0
and it maps || M into itself.
1

In order to show that condition 1 of theorem 2 is satisfied, we shall
give some inequalities. Let M, =v; (o, ;(})), then:

mk M
lmfl()\l’ )\2, ey )\k, t)} <Tlc)q
and
k
‘ s-BX, & l miipE P08
1 XYY VIR ¥ 1 i - .
® T @w0—BL+ 1)
Now we can show for operator T related to equation (9)
Ny i [TEE—TE 4] =N, ([T E—n)]< Q (k) Npsy, g E—1)
where

0w -0 (%)

If B8(k)<2, the conditions of theorem 2 are satisfied. For the determi-
nation of B(k) and for a consideration of the system (7) see [5] and [6].
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