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1. Introduction

In recent years, theoretical studies on boundary layer growth past an
axially symmetric body have gained considerable interest due to its numerous
applications to problems of Engineering. Namely, Boltze [11. A§kovié [2],
[3] and Warsi [4] have considered the case of boundary layer growth on
axially symmetric bodies when the velocity of the stream is proportional with
degree or exponential change of time. Further, Il1lingworth [5], Wadhwa
[6] and Purié [7], [8] have solved the problem of unsteady laminar boun-
dary layer on axially symmetric body wich is put to spiral motion. In all
these cases the fluid is considered to be everywhere incompressible.

Recently Brown [9] has analyzed the effect of heat transfer on two
dimensional boundary layer growth while more recently Riley [10] has inves-
tigated boundary layer flows which are induced when an isothermal rigid-body
rotation is disturbed by heating the fluid.

This paper is dedicated to the question of solving unsteady compressible
boundary layer in the impulsive motions of an axisymmetric body which exe-
cutes a translatory motion in the direction of his axis of symmetry and at the
same time rotates about it. We confine our attention to fluids of small visco-
sity and Prandtl number equal to unity. Such flows will be described by the
boundary layer equations which may be further simplified if we assume a linear
variation of viscosity with temperature. The assumption is made that the effects
of compressibility are confined to the boundary layer and the main stream
remains incompressible. This could be realized in practice by releasing a stream
of small Mach number past a very hot body with time-independent velocity.

2. Equations of meotion

For fluids of small viscosity @ the compressible boundary layer equations
(momentum, energy, mass conservation and state) which govern unsteady flow
past a body of revolution spinning about its axis, which is parallel to the
stream are
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The boundary conditions being

5) u=v=0, w=rQ, T=T, for y=0 and >0,
u=U(x), w=0, T=T, for y=oo.

In these equations x and y are measured along and normal to the wall
and z is the distance along the arc of a transversal crossection; u(x, y. t),
v(x,p, t) and w(x, y, t) are the components of velocity in the direction of x, y
and z respectively; ¢ represents time; r(x) rad.us of transversal crossection;
p denotes pressure; T temperature; ¢ Prandtl number; U (x) main-stream; £ an-
gular velocity; T, and T, are the constant wall and ambient temperature res-
pectively. The density p and viscosity p are functions of T and we shall assume
that the fluid is a gas such that

(6 ‘ | p~T.

In the energy equation (2) terms representing viscous dissipation have been
neglected, thus | T,—T,|>L2Q%/c, where L is a typical length and c, the
coefficient of specific heat at constant pressure.

With the assumption (6) it is possible to transform the above equations
as follows. We introduce a coordinate Y defined by

% [ £ ay,

and a stream function ¥ such that
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From the continuity equation (3) we then have
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Thus, using (4), (6) (7), (8) and (9) together with pu=const=p, e, a conse-
quence of (5) and (6), equations (1) and (3) may be written as
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where v=yp/p is the kinematic viscosity and T/T.=1+S.

2. Solution of the problem

For solving this problem the method of succesive approximations is applied
which has its physical meaning in connection with the process of forming the
boundary layer. Thus if we assume that ¥ and w have the forms

an ¥(x, Y,)=2)vu t tUF(x, 1, 1),
wix, Y, =0rO0(x. 9, 1),

where n=Y/2)v, ¢t is the similarity varicble, the equations (10) bacome
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subjected to the boundary conditions
F—a—F-—O G=1, S=T,/T,—1=8,(const) for %=0,
o7
(13) )
jzl, ®=0, S=0 for 7= o0,
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Now the equations (12) show that solutions for the fuctions F, and §
may bz found in the forms

du U dr , v dr
= 1 P VA — F13 T T
F Fo(n)+t[d F () + — F (vz)+Q U i (n)]+
(14) D=, () +1 [‘fl <1>u<n)+U—Z’ ®12()]+————

1 d
S=8,(n) +t——UNS;; (M) + ———.
r dx

Substituting these assumed solutions into the equations (12) each equation
will separate itself into the system of ordinary differential equations for deter-
mination of coefficients-functions of every of above solutions. Therefore we
have the following recursive system of the ordinary differential equations

Fy +29Fg=0, ®g+2q®=0, Sp+27Sp=0;
Fii+20Fii—4Fy—4(—1+Fg—F,F3)—4S5,,
@1y + 217 Dy —4 B, = —4 F, Dy,
15) Si1+2nSi1—4 S, = —4 Fy Sp;
Fi2+27Fia—4 Fia= —4 F, Fg,
D1y + 27 Pip—4 O, — —4 ( F, Dg—2 @, Fy),
Fis+2nFi3—4 Fiy= —4 @,
where primes denote the differentiation with respect to ». The boundary condi-
tions (13) transform themselves into the following forms
Fy=Fy=Fy=Fj=F,=Fp=F,;=F;3=0
Q,=1, §=9,, ®,=0,=5,=0
Fo=1, Fiy=F,=F;3=0,
D)= S, =D, =8, =D, =0

’} at n=0,
(16)
} at = oo.

The solutions of first three equations b:longing to the recursive sys-
tem (15) are

(17) Fy(n)= nerfn+l/— (e —1), Dy (n) =S8, (n)/Sy=1—erf,
where

K
erfv;=72;fe“fzdy,
0

is the Gauss’ error function.
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Now, with (17), the second equation of (15) becomes

Fii+2n F1—4 F;;==4erf2n—-4(szne"i’msw)erfn——
1
(13)
3 2 +~§—e~“’32—-~4 (Sy+ 1)
T i1

The pamcular solution of the non-homogeneous part of the above equation is
to be found in the form

19 Fip (n) = Xy (n)exf2q+ ¥y () exf -+ Zy ().

The substitution of (19) into (18) for the unknow coefficients-functions Xy, (x),
Y, (n) and Z;;(n), leads to the differential equations

Xi+29Xy—4X, =4,

-8:_~X;1 ~e~’32---—§—'xge*"*2+4Sw,

Vn- V=

2+ 20 Z b2 = — Vi S X, e
kil

V”

Yii+2nY—4Y, = —

3 e“”2-~§~ e2W—4(S,+1).
ki ki1

Solving this system we ob:ain

1 3
XuM=0"+—, YuM=-—ne"—S,,
2 V?t:
Zy (Vz)miéf“an 4w + 8+ 1.
T 3n

Hence, the particular integral (19) bzcomes completely definite. Since the parti-
cular solution of homogeneus part of the differential equation (18) is

Fun(—Ci (1 %2?22)%-02[(1+2n2)erfn+V-ne-“z],
it is possible to formulate the general solution of the initial equation
’ 2 7
mm:q(wm+cz[(1+2vz2)erfn+y-:ne~*f=2]+m(n).
k1

With boundary conditions (16) we obtain the following values for the con-
stants ‘
2
clm--<1+—---sw), Cr=tr s,
2 3=

3x
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Finally, solving in such way other equations (15) we are able to write
finite forms of solutions of systems of equations (15) as follows

/7 2 2
Fu(v;)=—(1 +§;+S,,,)(1 +2n2)+(%+;+Sw)[(1+27)2)erf7;+

—V% 7 e—"2]+(7)2—%> erf27)+l7—3;_tne-“2erfn+

2 e-2n? _4 e+ 8, (1—erfn)—1,
T kY]
4 , A
@y, (1) = Syy (/S = (————) (1+27) exfq+ —ne |+
3z 2 Ve
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2 2 2
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Vr T
The position of separation of forward flow from the contour is given

by 0u/0yl,—o=0 (or 0u/on|,—o=0) and the time f, at which separation
occurs at any particular place is therefore given by

fo F (0)
?F“(O)ﬂ-—g—?Fu(O)-{-QZ—(r;-;i';F]g(O)
where
Fr. (0)=—2— Fi (0)= — 1+2 s
. ho-2 Fo-2(iks)
2 8 v 4 2
Fo(0)= =(1——), F50)=-=[1—"=1).
(0= V( 37:) s © V?r( n)

4. Application

Let the sphere of radius a put into spiral motion by an impulsively jerk.
In this case we have

r(x)=asinxfa, U(x)= —;— U, sin x/a,
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where U, is the constant velocity of the fluid relative to the sphere. Therefore,
as a first approximation, the time of separation is given by '

. Fy (0)

ti=—
cos x/a {3/2 (F11(0) + Fi2 (0)) +~§~ Q Fi3(0) ]

@

where
i =Ustfa, Q=(QajU)

Hence as in the incompressible case separation corresponds to having

cos x/fa=—1 i.e. the last stagnation point. Using (20) relation (21) bzcomes
(22) L= L —
2.3634+1.58,,+0.4845Q

from where it follows that in the heat transfer case separation occurs earlier
than in the incompressible case.

When the wall temperature is large keeping Q fixed then relation (22)
shows that

t_:NI/Sw as  Sy,—>o0,

so that for very large wall temperatures separation occurs almost instanta-
neously.

The values of 1z, for different values of Sy and Q) calculated from the
formula (22) are given in the tuble b.low.

Now, in order to study the third approximations in ¢ from (14) it is
necessary to solve a system of linear differential equations of the same type
as those of the second approximations. But, b.cause the solutions are very
complicated we will not occupy ourselves with these in this paper.

Table t:

— Sy

0]

0 0.5 | 1

0 0.423 0.321 0.259

0.1 0.415 0.316 0.255

1 0.315 0.217 0.187

10 0.139 0.125 0.115
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