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We consider the non linear Cauchy problem
X' (A)y=—sa (A) Xr*1 (3), X(0)=r1

over the field of Mikusifski operators; here a()\) is continuous numerical func-
tion and s is the operator of differentiation.

We construct a solution X(2) to the above Cauchy problem. This solu-
tion is continuous, possesses the continuous derivative for A< [0, Al, and belongs
to the class /4 (f) of operator functions defined below (Definition 1).

Further we give several properties of the class .4 (f) which is of interest
in its own right. Namely a class very similar to the _4(f) occured earlier in
connection with certain linear Cauchy problem of this kind [2].

Remark: Definitions and notations concerning Mikusifiski operators
can be found in [1]. Further, C is the set of all complex function of a real
variable ¢, which are continuous for 7>>0.

Definition 1. A4 (f) is a subset of Mikusifiski operational function of
the form

S &l ea
<r<
XN =4 &=o [ (})
p A=0,

here Y>0 and a>0; I is the operator of integration, p is an operator, f(}) is
a numerical function defined on (0, A] and f(\)#£0 for any 2E(0, A a; are

complex numbers and the series > a converges absolutely.
k=0

. ®  a Jk+y
Lemma 1. The operational series

—————- s convergent in the ope-
K=o ¥ (ho)

rational sense for any A< (0, Al
Proof. First notice that

;% Jety _ { ay 1Y }EC
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k+y (1+ )
For each k=1, 2, 3,... and T>0, one has T'(k+vy+ 1)>

where m=|f(%,))|. Therefore, for 0<t<T
2T

14—
ay ety I ay ‘ e mmy—
[ (k+y+ 1) fFe () 2k+y
. . . bt ay th+y
From the above inequality follows that the series con-

_ ‘ k=0 I'(k+y + 1) 5= (hy)
verges absolutely and uniformly in every finite interval 0<t¢< 7, which proves
lemma 1.

Definition 2. Let X () and Y()) be two elements of 4 (f):

] 'k
) Ao A
X () =< iZofF* (M)

}/ A=0

% bklk+8
Z —_ 0<i<A
Y(N) =< &= of’”BO\)

r A=0

The operational function Z ()\)
© C Je+y+d

z S 0<agA
Z(7\)= Py fk*"“'ﬁ()\)

pr r=0,
k
where c;= Z a; by_;, is called the product (O) of X(») and Y(X), Z(\)=
i=0
=XN)oY ().

Lemma 2. For any »,&[0, A} holds:
1° Z () =X () Y ()
22 ZMWeA )
3° X(NOY()=YNoX ()
4 X)o[Y(MWoTMW]=[XMoYMoT ().

Proof. 1° For 2#0 we put

X09=S o X0)=3S L

= 2, 9> = Q2 Wy  0p=

’ K=0 mee k=0 SEE(A)
bklk+8

Y()= S 5 Y, ho) = S 5 =
(%) kzowk ) kzo Wi Wi 1548 ()
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F=1X(x0)={k§ e (t)}, {Fu (t)}={k"2 i (t)]

=0 =0

G=1Y (0) - {§ o <t)} . {Ga )= [Z o (t)}

U= [§O| e 1) r} V()= {éo |98 (1) l]
M=max U(t) L= max ¥V (t)
0<t<<T 0T

(all series are convergent by Lemma 1).
Now we have

()\ ) i C JE+v+d i k
Z ()= —= 0y Wi
K=o S (A) o iSo

and

Wi =X () Y () + S g [t ) —7 ()L
0 k=0

M

Zy (7\0) = kngw

I

To complete the proof we have to show that for n—o0
Y op[Yar (o)=Y (M= 3 {bx O}H{Gur (1)—G (0)}>0
k=0 k=0

uniformly in every finite interval 0<t<T.

From Lemma 1. there follows that for any >0, 0<¢<T, p=1, 2, ...
there exist N, and N, such that

€

G,()—G() < for n>N,

| Gn(1)—G(2)] > MT f
and

) <——  for n>N

i=§+l ¥ 4 KT >

Let N=max(;, N,); now for n>2N and 0<7<T we have

nZ f‘l’k(t_'f) [Grr () —G(P)]ld|<
=¥

n—N-—1 :
> [14:0=9]Grr(=G )+
k=0 o

t

nZ [k (1—7) || Gus (?)—G (7) [ d <
k=n—N0

Therefore Z () =X (A,) Y () for 2, &[0, Al
Properties 2°, 3°, 4° are obvious.
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Lemma 3. Suppose that f()) is a numerical function defined on (0, A],
and f(M)5£0. Further, put for 0<<y<1

0 —y lIc+YYIc
S ( )—* 0<i<A
X()=< =0\ k/fEr()
I A=0
then X(W)E A (f) and for each n© N holds
- K+
Y Z( nY)——l Y g<h<A
X (3)= K=o\ k] frErr ()
I A=0.

LY
Proof. The series z vk CDPP(y+k)
T'(yk!

XQM)eA) The 1dent1ty follows from definition 2. and from

30000

Lemma 4. Let f(}) be a continuous numerical function in [0, A}, f(1)#£0
Sfor A&(0, A, f(0)=0. If there exists certain interval (0, 7], n<A in which
f(N)>0, then the operational function

TNk sy
. (T

is absolutely convergent and so

U= 0<a<A, O<y<«],
,Zo SEY ()
I A=0

is continuous in the closed interval [0, A] and U(N)E A (f).

Proof. For 0<y<1 the series > <_Z> v¥ is absolutely convergent so

k=0
that U(QA)E A (f). The continuity of U()) in [0, A] follows from the conti-
nuity of the numerical function F(A, t) of two variables 2, ¢ such that 0 <A< A,
t>0, where F(}, t) is defined by the parametric function

(FO, D) =1U(®1), >0

f( v e_f_z%dr 0<a<A
FO, 1= I‘(1+€)fY(7\)F(‘{) t>0
ts r=0
T(1+e) >0
1
Y 1oy N e p— e‘}{(;; v 0<A<A
rou oo | TUFOS 0T @), (>0
" 2=0
I'(1+e) t>0
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Yt
£

The function of the real variables (1—7)st Y1 e
1>0, 0<A<A.

is continuous for 0<t<1,

! _xrT
Further integral f (1—7)rr1e TP gris uniformly convergent in every closed
0

domain 0<t< T, 0<<8 <A< A. Therefore F(}, t) is continuous in the domain

>0, 0<A<A.
1

55y AGAY
When A—0 and t—t,#%0 [ (1—1)s771e dt~T(y) (—t thus we
Y Y
huve
lim F (A i
H=e—""".
7\1_1)1‘1) 1) I'(l+e)
t—t1,#0
To complete the proof we have to see that lim F(x, t)=0 in the domain
A—0
=0

0<A<A, t=0. For each £>0 there exists a domain

0<t<min(1, %—V{F(lﬁ), 0<A<)<7n in which

¥t

|[F(x t)|<yr r-le fM dr<k,

1
1 s 1 f
F+e'(yy M)
V]
which proves the Lemma 4.

Lemma 5. Let f()\) be a continuous numerical function in [0, A],
F(N)5£0 for A&(0, A, £(0)=0. If there exists certain interval (0, m], n<<A,
in which f(\)s£0, then the operational function

(O v
Y(W) =< i=o\ k/ [fEri(d)
s A=0

0<y<1, is continuous in the closed interval [0, A] and Y (N)& A (f).

Proof. For 0<y<1 the series z (_Z) v% (k ++) is absolutely conver-

k=0
gent and so Y (A)E A ().

The continuity of Y (2) in [0, A[ follows from the continuity of the nu-
merical function G (2, t) of two variables in the domain 0 <A< A, t>0; where
G(\ t) is defined by the parametric function {G (A, ¢)}=BY(})
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H

-Y'Y 1 - (f——T)ZTY'—l e_fY(;) Y - T dT
GO O=1" T3 ) f2r ()
0
0<A<A, t=0
_t A=0 t>0
')
1
reT (I—T)ZTY—le_;(tl)[ LN L ]dT 0<h<A
ra)yre) fer@) () >0
G\ t)= 0
t A=0
T (2) t>0.

YtT
. . Y YiT
For 0<t<1, 0<A<A, t>0 the function (1—7)21¥"1e ¥ [f‘f“(?\) —f”Y(?\)]

of the real variables is continuous.

_rte
Further integral [ (1—7)2 1Y 1e f Y _xtT d~ is uniformly conver-
ey M

gent in every closed domain 0<t<T, 0<<d<A<A. Therefore G (2, ) is conti-
nuous in the domain O0<<A< A, ¢t>0.

lim GO, f)= lim yr— [ Y Fm(f@))Y_
A—0 A0

t—10#0 t—1y70 F (3) F (Y) fY+1 ()\) Yt
1 I+y
S Y fey ) vt
24y
+ﬂ—t—l‘(2+y)<&) __fo
S vt INP))
To complete the proof we have to see that lim G(», t)=0 in the domain
A0
t->0

O0<A<A, t>0. For each £>0 there exists a domain 0<i<i <7, 0<I<

<min(1, %) such that f(A)< %, in which

1 YT
GO, 1 L 200 [ e TP gy
OO < TR JTe T

! _xe
_f_mfﬂrlwe f()')d1)<g,
¥ 0

which proves the Lemma 5.
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Lemma 6. If f() is differentiable in (0, Al, the operational functions
of the class 4 (f) are also differentiable in (0, A] and one can obtain its deri-
vative by differentiating the defining operational .eries term by term.

o ay [ty
Proof. Let o M) E A(f). For 0<i<A, o(})=
12;) f‘lc+u ()\)
numer:cal function 0 (2, ¢) defined by the parametrical function {0 (%, t)} =/w (A)

K+
is of the form 0(\, f)= 3 il 0<A<A.
K=o I' (k+y+1)fF=(2)

) k+
The series z e 157 (k + o)
k=o' (k+v+ 1) f¥+*(})

domain 0<M\ <A< A, 0<t<T. Hence, for 0<A<A

. Then the

is uniformly convergent in each closed

007, ) & ap 9+ (k4 o) 709
oA K=o F(k+Y+ 1)fk+u+1 ()\) .
Therefore for 0<A<A
, &, ay(k+o) oty
o = — 3 HELDET o)

Py flc+a+1 ()\)

Lemma 7. Let f()) beacontinuous numerical function in [0, A] f())#0
Jor A& (0, A}, f(0)=0. Further, let f()) possess a bounded derivation f'(}) in
[0, Al If there exists certain interval (0, m], n<A in which f(2)>0, then the

operational function
TNk ey
- ()

U= YYZ“fTY(ﬂ’— 0>A<A

k=0
I A=0
0<y<1; is differentiable in [0, Al, UN)E A(Sf) and
RN e AP L U VA (O NP
v (x)={ v 2N fEr ) )
—sf7 (0) A=0

Proof. The relation UQ)E4(f) is proved in Lemma 4, and from
Lemma 6 follows

_Y k Jk+y 4
( k)Y 1 (k) £ ()
fk+‘{+1 ()\)

We have therefore only to show that U’(0)=-—sf'(0). Consider the numerical
function H(, t) of two variables A, ¢, 0<A<A, >0 defined by the paramet-
rical function {H(A, )} =11=U(A), >0, ie.

UM=—y S 0<A<A.
k=0

( TY
| (t_.-;)s YY Tv-1 e_md O<7\<A
T
B —td T+ frOTR) >0
te A=0

{T(1+¢) >0
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For OHM, 1) one obtains by definition that
Oh  a=o, 10
' _r
QH(M B . 1 ( (t—) e T® za >_
o ama\J Faxe TR Tm )
0
&+ 1 £
=lim — 7 i (P \()fY(k)—I‘(lJrnr)e:fY+ (k)) ! _
A0 A A+ M (y) YY Y yragrer) T'(1 +e)
_ " 0y, and for 2D 0.
I'(e A=0 1=0

Then U’(0)=sf’ (0).

Theorem 1. Let a()) be a continuous numerical function in [0, A]
with the properties
A

1) [a@)dt#0 for A0
0 A
2) There exists an n&(0, A] such that f a(t)dt>0 for A<w, then the
0

initial value problem
* X' (W)= —sa(d) X1 (2) n=2,3,4,..)
X0)=1
has in [0, A] the solution of the form:
1

AT
[ n ]]kﬂ/n
= k
X)= T Z Py

&~ k+1/n
k=0 nk[ fa ) dt]
0
1 =0

0<A<A

A
X(\) and X' (\) are continuous in [0, A] and X(N)E A ( | a(t)dt).
0
A
Proof. If we choose in the lemmas Y=i and f()\)=fa(t) dt then the
n 0

A
continuity of X (A) and X(A)E 4 ( f a(t)dt) follow from Lemma 4. The form of
‘ 0

1
[ —7] Feriln (k + 1/n) @ ()
1 i k 0<A<A
1 — n— A
X' ]/—nk=0 - [fa(t) dt]k+1+1/‘n
[¢]
—sa (0) A=0
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and its continuity follows from Lemmas 5, 6, 7. Using Lemma 3 and the
above expression for X'(2), the fact that X'(A) is a solution of (*) follows by
inspection, and X(0)=1 is obvious.

Remark: For n=1 the theorem is valid too, but the solution is of
the form

0 X= i (—1)F e+t
Sopr k1 O<A<A
[[a(ar]
0
I A=0

A
and so X WEA([a(r)dr).
0
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