THE CONTINUITY OF ONE CLASS OF OPERATIONAL FUNCTIONS

D. Nikolić-Despotović

(Communicated December 26, 1969)

The purpose of the work is to research the continuity in the point $\lambda = \lambda_0$ of operational function $R(\lambda)$ which is defined by the relation:

$$[R(\lambda)]^n = \frac{I}{\alpha(\lambda) s + \beta(\lambda)} \qquad n \in \mathbb{N}.$$

In that sense we shall write:

$$R(\lambda) = \frac{I}{(\alpha(\lambda) s + \beta(\lambda))^{\frac{1}{n}}}$$

where $\alpha(\lambda)$ and $\beta(\lambda)$ are numerical, continuous functions on the interval $[\lambda_1, \lambda_2]$ and $\alpha(\lambda_0) = 0$; s is the differential operator and I is the unit element. Multiplication $R^n(\lambda) = \underbrace{R(\lambda) R(\lambda) \cdots R(\lambda)}_{n}$ is in sense of multiplication of operators which are defined by Mikusiński's Operational Calculus [1].

This work partly extends the results obtained in [2]; they can be deduced from our theorem 1 for n=1.

In the proof of theorem 1, I shall use Mikusiński's theorem on bounded moments [3] i.e.

Theorem A; If β_1, β_2, \ldots is a sequence of positive numbers such that: $\sum_{n=1}^{\infty} \frac{1}{\beta_n} = \infty \text{ and } \beta_{n+1} - \beta_n > \varepsilon > 0, \text{ for } n = 1, 2, \ldots \text{ and } g(t) \text{ is a function, integrable in } [0, T], \text{ such that:}$

$$\left| \int_{0}^{T} e^{\beta_{n}t} g(t) dt \right| < M$$

then g(t) = 0 almost everywhere in [0, T].

Theorem 1. Suppose that:

- 1. $\alpha(\lambda)$ and $\beta(\lambda)$ are numerical, real, continuous functions on interval $[\lambda_1, \lambda_2]$.
- 2. $\lambda_0 \in [\lambda_1, \lambda_2]$ and λ_0 is an isolated zero of the function $\alpha(\lambda)$, namely $\alpha(\lambda_0) = 0$.
- 3. $\beta(\lambda_0) \neq 0$.

Necessary and sufficient condition for the operational function

(1)
$$R(\lambda) = \frac{I}{(\alpha(\lambda)s + \beta(\lambda))^{\frac{1}{n}}} \qquad n \in \mathbb{N}$$

to be continuous in $\lambda = \lambda_0$, in the sense of continuity in Operational Calculus, is the existence of a neighbourhod V_0 of the point λ_0 in which $\frac{\beta(\lambda)}{\alpha(\lambda)} > 0$ while $\lambda \in V_0/\{\lambda_0\}$.

Proof: The condition is sufficient For $p \in N$ is

$$R(\lambda) = \begin{cases} \frac{1}{(\alpha(\lambda))^{\frac{1}{n}}} \frac{t^{\frac{1}{n}-1}}{\Gamma(\frac{1}{u})} & \lambda \neq \lambda_0 \\ \frac{1}{(\beta(\lambda))^{\frac{1}{n}}} I & \lambda = \lambda_0 \end{cases}$$

$$= s^{p+1} \left\{ \frac{1}{(\alpha(\lambda))^{\frac{1}{n}} \Gamma\left(\frac{1}{n}\right) p!} \int_{0}^{t} e^{-\frac{\beta(\lambda)}{\alpha(\lambda)} u} u^{\frac{1}{n}} (t-u)^{p} du \qquad \lambda \neq \lambda_{0} \\ \frac{t^{p}}{p! (\beta(\lambda))^{\frac{1}{n}}} \qquad \qquad \lambda = \lambda_{0} \right\}$$

Supposing that there is a neighbourhood V_0 of the point λ_0 in which $\frac{\beta(\lambda)}{\alpha(\lambda)} = \gamma(\lambda) > 0$ while $\lambda \in V_0 \setminus \{\lambda_0\}$, then by substitution $\gamma(\lambda) u = x^n$ we obtain the numerical function:

$$P(\lambda, t) = \frac{1}{(\alpha(\lambda))^{\frac{1}{n}} p! \ \Gamma\left(\frac{1}{n}\right)} \int_{0}^{t} e^{-\gamma(\lambda) u} u^{\frac{1}{n}-1} (t-u)^{p} du =$$

$$= \frac{n}{(\beta(\lambda))^{\frac{1}{n}} p! \ \Gamma\left(1+\frac{1}{n}\right)} \int_{0}^{t} \left(t-\frac{x^{n}}{\gamma(\lambda)}\right)^{p} e^{-x^{n}} dx$$

$$P(\lambda, t) = \frac{1}{(\beta(\lambda))^{\frac{1}{n}} p! \ \Gamma\left(1+\frac{1}{n}\right)} \int_{0}^{t} t^{p} e^{-x^{n}} \sum_{k=0}^{p} (-1)^{k} {p \choose k} \frac{x^{nk}}{\gamma_{(\lambda)}^{k} t^{k}} dx.$$

If we denote with:

$$I_n = \int_0^n e^{-x^n} dx, \text{ and with } I_n^k = \int_0^n x^{nk} e^{-x^n} dx$$

then integrating by parts, we obtain

$$I_{n}^{k} = \frac{I_{n}}{n^{k}} \prod_{\nu=1}^{k-1} (n\nu + 1) - \frac{1}{n} e^{-\gamma(\lambda)t} (\gamma(\lambda)t)^{1/n} \left\{ (\gamma(\lambda)t)^{k-1} + \sum_{\nu=1}^{k-1} \left[(\gamma(\lambda)t)^{\nu-1} \prod_{\nu=1}^{k-1} \left(\nu + \frac{1}{n} \right) \right] \right\}$$

for k = 1, 2, ..., p.

Therefore

(2)
$$P(\lambda,t) = \frac{1}{(\beta(\lambda))^{\frac{1}{n}} p! \Gamma\left(1+\frac{1}{n}\right)} \left[(t^{p} - Q(\lambda,t)) I_{n} + T(\lambda,t) \right]$$

where it is written down as:

$$Q(\lambda, t) = \frac{1}{n\gamma(\lambda)} \left[pt^{p-1} - \frac{n+1}{n\gamma(\lambda)} \binom{p}{2} t^{p-2} + \frac{(2n+1)(n+1)}{(n\gamma(\lambda))^2} \binom{p}{3} t^{p-3} + \cdots + \left(\frac{-1}{n\gamma(\lambda)} \right)^{p-1} \prod_{\nu=1}^{p-1} (n\nu+1) \right]$$

$$+ \cdots + \left(\frac{-1}{n\gamma(\lambda)} \right)^{p-1} \prod_{\nu=1}^{p-1} (n\nu+1) \right]$$

$$T(\lambda, t) = \frac{t^{1/n} e^{-\gamma(\lambda)t}}{n\gamma^{1-\frac{1}{n}}} \left\{ t^{p-1} + \frac{t^{p-2}}{n\gamma(\lambda)} \sum_{k=1}^{p-1} (-1)^{k} (nk+1) \binom{p}{k+1} + \frac{t^{p-3}}{(n\gamma(\lambda))^{2}} \sum_{k=2}^{p-1} (-1)^{k} (nk+1) (nk-n+1) \binom{p}{k+1} + \cdots + \frac{(-1)^{p-1}}{(n\gamma(\lambda))^{p-2}} \prod_{\nu=1}^{p-1} (n\nu+1) \right\}.$$

The operational function (1) has the following form:

$$R(\lambda) = s^{p+1} \left\{ \begin{array}{cc} \frac{1}{\beta^{\frac{1}{n}} \Gamma(1+1/n) p!} & [(t^{p} - Q(\lambda, t)) I_{n} + T(\lambda, t)] & \lambda \neq \lambda_{0} \\ & \frac{t^{p}}{p! \beta^{\frac{1}{n}}(\lambda)} & \lambda = \lambda_{0} \end{array} \right\}$$

where $Q(\lambda, t)$ and $T(\lambda, t)$ are defined by the equalities (3).

When $\lambda \rightarrow \lambda_0$ independent from t, then:

$$Q(\lambda, t) \to Q(\lambda_0, t) \equiv 0$$
$$T(\lambda, t) \to T(\lambda_0, t) = 0$$

$$I_n \to \int_0^\infty e^{-x^n} dx = \frac{1}{n} \Gamma\left(\frac{1}{n}\right) = \Gamma\left(1 + \frac{1}{n}\right)$$

and the numerical function

$$\left\{ \begin{array}{c} \frac{1}{p! \, \beta^{\frac{1}{n}}(\lambda) \, \Gamma\left(1 + \frac{1}{n}\right)} \, \left[(t^{p} - Q(\lambda, t)) \, I_{n} + T(\lambda, t) \right] & \lambda \neq \lambda_{0} \\ \\ \frac{t^{p}}{p! \, \beta^{\frac{1}{n}}(\lambda)} & \lambda = \lambda_{0} \end{array} \right\}$$

is continuous for $\lambda = \lambda_0$, $0 < t < \infty$ and by the definition of continuity of the operational function, $R(\lambda)$ is continuous in $\lambda = \lambda_0$. Thus the condition is sufficient.

The condition is necessary. Supposing now that there is not a neighbourhood of the point λ_0 in which $\frac{\beta(\lambda)}{\alpha(\lambda)} > 0$; then there will exist a closed neighbourhood $\overline{V}(\lambda_0)$ of the point λ_0 in which $\beta(\lambda)$ does not change its sign and reaches the maximum and minimum. The characteristic of a continuous function $\delta(\lambda) = -\frac{\beta(\lambda)}{\alpha(\lambda)}$ is that: for each neighbourhood $V_n(\lambda_0)$ of the point λ_0 there is a point $\lambda_n \in V_n(\lambda_0)$ such that $\delta(\lambda_n) > 0$. Let the neighbourhood $V_n(\lambda_0)$ make a monotonous basis; the sequence $\{\lambda_n\}$ converges to λ_0 and beginning from one n_0 $V_n(\lambda_0) \subset \overline{V}(\lambda_0)$ for every $n \geqslant n_0$. According to the supposition that $\beta(\lambda)$ on $\overline{V}(\lambda_0)$ (has the minimum on \overline{V} different from zero and maximum) and knowing that

Because of continuity of $\delta(\lambda)$ there is a subset of $\overline{V}(\lambda_0)$ which is mapped onto a halfline $x > \delta(\lambda_{n_0})$. There is, also a subset in each $V_n(\lambda_0)$ which is mapped onto a halfline $x > \delta(\lambda_n)$. Let $\delta(\lambda_{n_0})$ be such that:

$$m \leq \delta(\lambda_0) < m+1$$

Let us form a sequence λ_i in the following way:

 $\alpha(\lambda_0) = 0$, it follows that $\delta(\lambda_n) \to \infty$ when $n \to \infty$.

$$\delta(\lambda_i') = m + i; k = \max n, \text{ for which } \lambda_i' \in V_n(\lambda_0), \lambda_i' \in V_k(\lambda_0).$$

As $\delta(\lambda)$ is a continuous function it will also assume all the values between $\delta(\lambda'_{i+1})$ and $\delta(\lambda'_i)$, while $\lambda'_i < \lambda < \lambda'_{i+1}$ and the sequence $\delta_i = \delta(\lambda'_i)$ satisfies the conditons of the Theorem A. If in this cas the operational function would be continuous too, there would exist $f \in C$, $f \neq 0$, such that $R(\lambda) f$ is a numerous

function of two variables λ and t, continuous for $\lambda = \lambda_0$ and $t \ge 0$. Namely, for each fixed number $T \in \mathbb{R}^+$ there would exist a fixed number M such that:

$$\left|\int\limits_{0}^{T} e^{8i^{u}} u^{1/n-1} f(T-u) du\right| < M.$$

Function $g(u)=u^{1/n-1}f(T-u)$ is integrable in the interval [0, T], therefore the conditions of Theorem A are satisfied, and according to the same theorem, it would follow that g(u)=0, almost everywhere, while $u\in[0, T]$; namely f(u)=0, almost everywhere, while $u\in[0, T]$. It is contradictory to the supposition that $f\not\equiv 0$, therefore the supposition from which we started does not hold, namely $R(\lambda)$ is not continuous at the point $\lambda=\lambda_0$.

Theorem 2. Let $\alpha(\lambda)$ and $\beta(\lambda)$ have the first derivate as numerical functions in the interval $[\lambda_1, \lambda_2]$ and satisfy the conditions of the preceding theorem. Necessary and sufficient condition that operational function (1) has the first derivate continuous at the point $\lambda = \lambda_0$, that there exists a neighbourhood V_0 of the point λ_0 in which $\frac{\beta(\lambda)}{\alpha(\lambda)} > 0$ while $\lambda \in V_0 \setminus \{\lambda_0\}$.

Proof. The condition is sufficient:

If there exists a neighbourhood $V_0(\lambda_0)$ such that $\frac{\beta(\lambda)}{\alpha(\lambda)} > 0$ while $\lambda \in V_0 \setminus \{\lambda_0\}$ the operational function (1) is, according to the preceding theorem, continuous at point $\lambda = \lambda_0$, and can be written as:

$$R(\lambda) = s^{p+1} \quad \left\{ \begin{aligned} & P(\lambda, t) & \lambda \neq \lambda_0 \\ & \frac{t}{p! \, \beta^{\frac{1}{n}}(\lambda)} & \lambda = \lambda_0 \end{aligned} \right\}; \qquad \left\{ \begin{aligned} & P(\lambda, t) & \lambda \neq \lambda_0 \\ & \frac{t^p}{p! \, \beta^{\frac{1}{n}}(\lambda)} & \lambda = \lambda_0 \end{aligned} \right\} \quad \text{is a continuous}$$

function for $\lambda = \lambda_0$, $0 < t < \infty$. Therefore:

$$R'(\lambda) = s^{p+1} \left\{ \begin{array}{ll} \frac{\partial P(\lambda, t)}{\partial \lambda} & \lambda \neq \lambda_0 \\ \frac{-t^p \beta'(\lambda)}{p! n \beta^{1+\frac{1}{n}}(\lambda)} & \lambda = \lambda_0 \end{array} \right\}$$

It should be shown that $\begin{cases}
\frac{\partial P(\lambda, t)}{\partial \lambda} & \lambda \neq \lambda_0 \\
\frac{-t^p \beta'(\lambda)}{np! \beta^{1 + \frac{1}{n}}(\lambda)} & \lambda = \lambda_0
\end{cases}$ is continuous for

 $\lambda = \lambda_0, \ 0 \le t < \infty.$

$$\frac{\partial P}{\partial \lambda} = \frac{1}{p! \Gamma\left(1 + \frac{1}{n}\right)} \left[\frac{-\beta'(\lambda)}{n \beta \frac{1 + \frac{1}{n}}{(\lambda)}} \left(t^{p} - Q(\lambda, t) I_{n} - \frac{\beta'(\lambda)}{n \beta \frac{1 + \frac{1}{n}}{(\lambda)}} T(\lambda, t) + \frac{1}{n \beta \frac{1}{n} \frac{1}{n}} \frac{\partial T(\lambda, t)}{\partial \lambda} - \frac{\partial Q(\lambda, t)}{\beta \frac{1}{(\lambda)}} I_{n} + \frac{\gamma'(\lambda)}{n \gamma \frac{1 - \frac{1}{n}}{(\lambda)}} \left(\frac{t}{\beta(\lambda)}\right)^{1/n} \left(t^{p} - Q(\lambda, t)\right) \right]$$

$$\frac{\partial P}{\partial \lambda} = \frac{1}{p! \Gamma\left(1 + \frac{1}{n}\right)} \left\{ \frac{-t^{p} \beta'(\lambda) I_{n}}{n \beta \frac{1 + \frac{1}{n}}{(\lambda)}} - \frac{\beta'(\lambda)}{n \beta \frac{1 + \frac{1}{n}}{(\lambda)}} T(\lambda, t) + \frac{\gamma'(\lambda) t^{\frac{1}{n}} e^{-\gamma(\lambda) t}}{n \gamma \frac{2 - \frac{1}{n}}{(\lambda)}} S(t, \lambda) + \frac{I_{n}}{n \beta \frac{1}{n}} \left[\left(\frac{\beta'(\lambda)}{n \beta(\lambda)} + \frac{\gamma'(\lambda)}{\gamma^{2}(\lambda)}\right) p t^{p-1} - \frac{n+1}{n \gamma^{2}(\lambda)} \left(\frac{p}{2}\right) t^{p-2} \left(\frac{\beta'(\lambda)}{n \beta(\lambda)} + \frac{2\gamma'(\lambda)}{\gamma(\lambda)}\right) - \frac{1}{n \gamma^{2}(\lambda)} \left(\frac{\beta'(\lambda)}{n \beta(\lambda)} + \frac{p\gamma'(\lambda)}{\gamma(\lambda)}\right) \prod_{\nu=1}^{p-1} (n \nu + 1) \right] \right\}$$

$$S(\lambda, t) = \frac{t^{p-1}}{n} \left[1 - n - p - \sum_{k=2}^{p} (-1)^{k+1} (nk - n + 1) \binom{p}{k} \right] + \frac{t^{p-2}}{n \gamma(\lambda)} \left[(n+1) p (p-1) + \sum_{k=3}^{p} (-1)^{k+1} (2-k) (nk - n + 1) \binom{p}{k} \right] + \frac{(-1)^{p} \left(\frac{2}{n} - p\right) \prod_{\nu=1}^{p-1} (n \nu + 1)}{(n \gamma(\lambda))^{p-1}}$$

When $\lambda \to \lambda_0$ independent of t, then for $p-1 \ge 1$

$$\frac{\partial P}{\partial \lambda} \rightarrow \frac{-t^{p} \beta'(\lambda_{0}) \Gamma(1+1/n)}{np! \beta_{(\lambda_{0})}^{1+\frac{1}{n}} \Gamma(1+1/n)} - \frac{p t^{p-1} \Gamma(1+1/n) \alpha'(\lambda_{0})}{p! \beta^{\frac{1}{n}} (\lambda_{0}) \Gamma(1+1/n)}$$

Namely

where

(4)

$$R'(\lambda) \rightarrow -s^{p+1} l^{p+1} \left(\frac{\beta'(\lambda_0)}{n \beta_{(\lambda_0)}^{\frac{1}{n}+1}} \right) - s \left(\frac{\alpha'(\lambda_0)}{\beta_{(\lambda_0)}^{\frac{1}{n}}(\lambda_0)} \right) = -\frac{\beta'(\lambda_0)}{n \beta_{(\lambda_0)}^{\frac{1}{n}+1}} = R'(\lambda_0)$$

The condition is necessary.

If does not exist a neighbourhood V_0 of the point λ_0 in which $\frac{\beta(\lambda)}{\alpha(\lambda)} > 0$ while $\lambda \in V_0/\{\lambda_0\}$, then according to the preceding theorem, the function (1) is not continuous at $\lambda = \lambda_0$, and cannot have the first derivate continuous at the point $\lambda = \lambda_0$. So the condition of necessity of the theorem is proved.

REFERENCES

- [1] Mikusiński, J., Operational Calculus, Pergamon Press, New York, 195.
- [2] D. Despotović, B. Stanković, Continuité d'une fonction opératoire, Publ. Inst. Math., Beograd, 7 (1967) 197-203.
- [3] Mikusiński, J., Nardzewski R., A theorem on bounded moments, Studia Math., XIII (1953) 51-55.