ON THE CONVERGENCE OF A LACUNARY FOURIER SERIES AND ITS CONJUGATE SERIES

V. M. Shah

(Received February, 10, 1968)

1. Let f(x) be integrable L in $(-\pi, \pi)$ and periodic with period 2π . Let

$$(1.1) \Sigma (a_{n_k} \cos n_k x + b_{n_k} \sin n_k x)$$

be a Fourier series of f(x) with an infinity of gaps (n_k, n_{k+1}) such that $n_{k+1} - n_k \to \infty$.

The conjugate series of (1.1) is

(1.2)
$$\Sigma (b_{n_k} \cos n_k x - a_{n_k} \sin n_k x).$$

Let

(1.3)
$$\overline{f}(x) = -\frac{1}{2\pi} \int_{0}^{\pi} \frac{\psi(t)}{t \operatorname{an} \frac{t}{2}} dt$$

where

$$\psi(t) = f(x+t) - f(x-t)$$
.

2. We discuss here the convergence of the series (1.1) and (1.2) when the function f(x) satisfies certain conditions in a subinterval $|x-x_0| \le \delta$ of, $(-\pi, \pi)$. Let I denote such a subinterval. We prove the following theorems.

Theorem 1. If (1.1) is a Fourier series of f(x) where $f(x) \in L^2(I)$ then (1.1) and (1.2) are almost everywhere convergent.

Theorem 2. If (1.1) is a Fourier series of f(x) where f(x) is of bounded variation in some subinterval I, then (1.1) is convergent to [f(x+0)+f(x-0)]/2 at any point where this expression has a meaning and (1.2) is convergent to (1.3) whenever (1.3) exists.

3. Proof of Theorem 1.

Lemma: If $f(x) \in L^2(I)$ and if (1.1) is a Fourier series of f(x), then $f(x), \in L^2(-\pi, \pi)$.

This is a special case of a very general theorem due to Paley and Wiener ([1], theorem VLII').

We also require the following known theorem due to Carleson [2].

Theorem. Fourier series of a function $f(x) \in L^2(-\pi, \pi)$ converges almost everywhere.

Now, our proof is easy.

If $f(x) \in L^2(I)$, then $f(x) \in L^2(-\pi, \pi)$ by the above lemma and hence (1.1) converges almost everywhere by Carleson's theorem.

Also, by Riesz-Fischer theorem, (1.2) is a Fourier series of $\overline{f}(x) \in L^2(-\pi, \pi)$ whenever $f(x) \in L^2(-\pi, \pi)$ and hence (1.2) converges almost everywhere by Carlesons's theorem.

Proof of Theorem 2.

If S_n are the partial sums and σ_n are the arithmetic means for the series

$$u_0 + u_1 + u_2 + \cdots + u_n + \cdots,$$

 $S_n - \sigma_n = \frac{u_1 + 2u_2 + 3u_3 + \cdots + nu_n}{n+1}.$

In case of a lacunary series, where in calculating Fejér's sums, it is necessary to replace the absent terms by zero, we have

(3.1)
$$S_{n_k} - \sigma_{n_k} = \frac{n_1 u_{n_1} + n 2 u_{n_2} + \cdots + n_k u_{n_k}}{n_{k+1}}.$$

Now, we take

$$u_{n_k} = a_{n_k} \cos n_k x + b_{n_k} \sin n_k x$$

in case of the series (1.1) and

$$u_{n_k} = b_{n_k} \cos n_k x - a_{n_k} \sin n_k x$$

in case of the series (1.2)

Under the conditions of the theorem, we have by [3]:

$$a_{n_k} = 0 (1/n_k),$$
 $b_{n_k} = 0 (1/n_k)$
 $**$
 $u_{n_k} = 0 (1/n_k)$ and hence
 $n_k u_{n_k} = 0 (1).$

Now, the number of terms in the numerator of the right hand side of (3.1) is k.

$$**_* |S_{n_k} - \sigma_{n_k}| < \frac{Ak}{n_k},$$

where A is an absolute constant.

Now, $k/n_k \to 0$ as $k \to \infty$, whenever $n_{k+1} - n_k \to \infty$ and hence

$$|S_{n_k}-\sigma_{n_k}|\to 0.$$

Now, it is known that the Fourier series (1.1) is summable (c, 1) to [f(x+0)+f(x-0)]/2 for every value of x for which this expression has a meaning, i.e.

$$\sigma_{n_k} \to [f(x+0) + f(x-0)]/2.$$

Hence $S_{n_k} \to [f(x+0)+f(x-0)]/2$ for every value value of x for which this expression has a meaning.

It is also known that (1.2) is summable (c, 1) to (1.3) at every value of x for which (1.3) exists and hence by the same argument as used above, (1.2) converges to (1.3) whenever (1.3) exists.

I am thankful to Prof. U. N. Singh for his help in the preparation of this paper.

REFERENCES

- [1] R. E. A. C. Paley and N. Wiener, Fourier transforms in the complex domain, New York, 1934.
- [2] L. Carleson, On convergence and growth of partial sums of Fourier series, Acta Math., 116 (1966), 135—157.
- [3] P. B. Kennedy, Fourier series with gaps, Quart. J. Mat., Oxford, 7 (1956) 7 (1956) 224-230.

Department of Mathematics, M. S. University of Baroda, B a r o d a—2. (India).