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1. In {2], Carlitz has shown that the solution of the functional equation
(cotasin By? f,(xtana)
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where ¢,.. are arbitrary constants.
This solution £, (7) is given by the generating relation of the type
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It follows that the functions generated by the generating functions of the
form et F(xt) may have a relation of the form (1.1).

Further, Jyoti Choudhary [5] has shown that the sequence of polynomials
F, (x) given by the relation
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will have a relation of the type
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which reduces to the form
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The particular cases of F,(x) have been discussed in [9], [8], [1}, [3] for
Legendre, Associated Legendre and Ultraspherical polynomials.

Starting from [7, p.238], further we shall show that the polynomials
gn{x) defined by

(1.7) S g (1) 7= & (1) £(x1)
n=0
where
00“ zn
f(2)=g,0% —
and
o= S bym,
A=

will have a relation analogous to (1.1) and (1.6), ie.,

(1.8) 2n () - "z(i)"""cm Znm ()

m==0
where ¢, is defined by (2.1). Taking particular cases of this, we shall obtain
some resuits involving Laguerre and Hermite polynomials, few of them are
already known.
In particular, we shall obtain

(1.9) (cotasin By LY (tan «)
_ 2o v\l sin(B—a) 1™ wm 7O
s )[Msina ] (os By L3, (tan B),
and
(1.10) (cotasin By H, (}/tan )

_ n! [ sin (¢ —B) ]m(cos 3)3‘% Hy—om (Vtan B),

mao m!(n—2m)! sin o
where LY (x) and H,(x) are Laguerre and Hermite polynomials respectively.
2. Consider, if ‘
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where ¢,, is a function of x and p, and y==0, @(M)z%:(),
y

then from (1.7), we have
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Therefore, equating the coefficients of %, we obtain

gn(x)= m% Cm (%-)n’m Zn-—m (¥)

which is (1.8).
Thus we obtain the expansion of g,(x) in terms of a series of the same
polynomials but of an arbitrary non-zero variable y.

Replacing x by Ay, we get the multiplication formula for g, (x

(2.2) &n(hy)= Z Con N Gy (1),

m=0

where ¢, will contain A and y.
3. In (1.7) if we take

®(t)=¢ and g, (x)=?~’?~§:i), then
n!
3. S oa () et ),
n=0 n!

so that, from (2.1)

and, therefore, from (1.8) we obtain

wa)’“ Sn-m (¥)
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n! me=0 \ YV m!
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(3.2) o (x)=--<~~~~) S (”)(L) Snm ).
y m=0 \ M X
In particular, if we replace x by xy in (3.2), we obtain
Ao fin
(3.3) oy (9= 3 ( )(1—-x>mxﬁ—m S (),
m=af}
or, if we prefer
‘ noin
(3.4) o (39) = z( | (1—xy-m xm g, (3).
m==0 \ I’

This result which is particular case of (3.2) is given in [7, p.239]
Again, in (3.2) replacing x by tana and y by tanff we obtain
(3.5) (cotasinPBlo, (lana)= Z (H)[M] cos®" B g, . (tan B).

ma==0 NI Sin o

This result was given by Chatterjea [4, p. 243] for the polynomials &, (x)
defined by the generating function

(3.6) ¢ L(xt)= S @, (x)g.
n=0 .
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We note that @, (x) are particular case of o, (x) if in (3.1) we replace
J{xt) by a particular function I (x¢).

4. In [6, p. 192], a multiplication formula for the Laguerre polynomial
is given in the form

n I3
@.1) L2 0= 3 (7" pam a2 o)
m=0 7 :

Chatterjea [4, p. 244] has proved the following formula for simple La-
guerre polynomial:

4.2 {cotasin By* L, (tan o}
= i: ( n )[M}"‘]mc(}s ?@m’mg Lﬁmm (taﬁ S)g
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and has deduced the result

(4.3) (1+x)0L, (\/ 155) =3 (" )xn—m Lo (@;g) :
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In this section, we shall obtain as a particular case of (1.8), more general
results for the Laguerre polynomials.

In (1.7), setting
Dy=2et and f{xt)=oF,{(—; 1+ —xp),

and comparing with the well known generating function for the Laguerre poly-
nomials [10, p.201]

Rt S — .
(4.4) Eﬂ =T, et oF (—; 14 v;—xt)

we have
o L (%)
&n (X): NN
and from (2.1) it is clear that
5T
A S
m = T

Therefore, from (1.8) we obtain

o () () e a0
LY (= 5 L

2T T (T
@5 x{?)”éf}{v;ﬂ(Xi_f)mzi”lm{y}.

From this it can be easily seen that on putting x=2iy in (4.5) we get
{4.1).
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Next, on putting x=tana and y=tanf in (4.5) we obtain

@ (cot e sin gy LY (tan a)
S M " n—m )
B m§o< m ) [ sin o ] cos®™ {3 L, , (tan B).

In this, taking B=2a«, we get
n
@47)  QcostapL (tanw)- 3 (";”) (cos 2e)mm L9, (tan 22).
m=0

Further using cos2a=x, (4.7) can be put in the form

(4.8) (1+xmLy ( 1= *x) - (" * ”) xnem L9 (V f —x’;) .
1 ’!‘ X =0 m x

The relations (4.2) and (4.3) can be obtained from (4.6) and (4.8) on
simply putting v=0.

Again, on putting x= lty in (4.5) we obtain
t
(4.9) Ly (—’y ):(1 Ly S (”” )szﬁz’(y).
1+1¢ m—0 \R—mM

As an application of this result, we can derive certain integrals involving
Laguerre polynomials:

Using the orthogonal property of the Laguerre polynomials

(4.10) f W eV [LY (NP dy = &;V'Jr_") , R,()>—1
0

we obtain from (4.9)
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Again combining the result [10. p. 212}, for arbitrary c,

L Fl[ € ::2’_’]: S (@uLy () 1"

(1—2) ! 1+v; 1—t] .= _—(—1+v)n )
with (4.9) and using the orthogonal property of Laguerre polynomials we have,
(4.12) fy"e-?/lFl @ =N L(,f)( ¥t )dy
1+y;, 1—1¢ 1+1¢
4]

_ (= Pe+rn+1)
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Fil—ne; 14+v;—12].
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5. In this section we shall obtain similar relations for the Hermite poly-
nomials H, (x) defined by the generating function

o B
.1 S Hy () 5 = e,
n=0 n!
In (1.7), if we take

B (1) =", f(xt)=erat
and compare with (5.1), we get

H, (x
£y o)
n!
and from (2.1)
5
2
Cam ,’Vm s Cmi =0,

Hy(x) 123 ( X )"—zm Hyym(¥)
" = - Comp ——
(n—2m)!

n! m=0\}Y
or,
fx # {n2} n! XZ_y2\m
(5.2) Ho =3 5 s (T57) )

Replacing x by Ay we obtain

{n/2}
53) HOop-S —T

e (A2 e | Y j B2 10
Zoml 2y I i 0)-

In (5.2), on putting y=1, we get

[#/2) !

(5.4) Hy (x) = (2—1)mx"2" Hy_y m (1),

mmo;ze?(nmlm)!

which is given in [10, p. 199].
Again, in (5.2) replacing x by Vtanx and y by }/tan B, we get

(cotasin Y2 H, (Vtan«)

- e [ sy T oo ().

meom! (n—2 m)! sina

which is (1.10).
On putting B=2a we get
@2 (—1ymn!

"
(5.5 (2cosza) H, (Jtanw) = zomi(n M’)‘(coszcx)2 H,pm (Vtan2a).
e - — H

I am thankful to Dr. R. P. Singh for giving kind help during the prepa-
ration of this note.
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