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Notations

X, ¥y, r=r, (x)+y ~— usual coordinates of the boundary layer,
r; (x) — radius of the body cross-section,
b — radius of the circular cylinder,
I — characteristic dimension of the body,
u, v — velocity projections along the directions x and y, respectively»
U(x) — free stream velocity,
p — pressure,
T — temperature,
T, (x} ~— free stream temperature,
8 (x) — boundary layer thickness,
g — acceleration due to the gravity,
.V, €y, @ =XAfpge, — usual denotations for the well known properties of the fluid,
g=A{Ty)y., — heat flux,
P=v/a — Prandtl number,
R,=U, x/v — local Reynolds number,
Ny=gx/N(T,—T,) — local Nusselt number,
Ec-—:v’i 8¢, (Ty—Tw) — Eckert number,
I'(x) — gamma function,
$(x) — logarithmic derivative of the gamma function,

v (1)=0,5772..... — Euler constant and
@ (i, J; x), G(i,j;x) — confluent hypergeometric functions of the first and second
kinds.

The meaning of remaining notations will be given later on in the paper.
1. Introduction

This paper considers the problem of the thermal boundary layer on
bodies of revolution in which the ratio of the boundary layer thickness and
the radius of the body cross-section is not a negligible quantity, but is approxi-
mately equal to unity, or is even greater than unity, so that the transverse
curvature effect must be taken into account. Here, the laminar forced convec-

47



48 Vladan D, Dordevi¢

tion of an incompressible fluid is dealt with. The temperature field within the
boundary layer is then given by the following equation.

1 1
(1 uTx+va:a(Tw+ Ty)+ Y uﬁ + up’ (x).
-ty 8¢p P 8Cy

If the transverse curvature effect were to be neglected, the underlined
term in this equation would be ommitted. Such an equation has been solved
already [1, 2] by Gortler’s method [3], but the purpose of the present paper
is to investigate the influence of that underlined term. Some purely qualititative
conclusions, however, can be reached without first integrating the Equation (1).
For instance, in the case of the thermometer problem, and in view of the fact
that the body surface is thermally insulated, the underlined term in the imme-
diate vicinity of the body will be extremely small, and therefore the transverse
curvature effect for that region will be negligible. On the very surface of the
body under consideration, the adiabatic wall temperature will be observed. In
the case of the cooling problem, and in view of the fact that the heats due
to friction and compression are taken into account, that is the last two terms
of (1), the temperature gradient could change its sign in the boundary layer,
and thus it is impossible to estimate in advance the influence of the underli-
ned term in (1).

The velocity field in that case is given [4] by the dimension less stream
function F(§,7) and W(E,¢) in the following manner: F(§, n)=Fy(, n)+
for A (B)<<1, and:

W(ESCP):(P’*‘ W} (E’ (P)+ WZ(E’GP) e
InA®E) In2p@)

for A(E)>1. The coefficients of these series can be expanded into Gortler’s
series [3] where Fo (&, ), F, (&, n), F,(¢), ... can be calculated only numeri-
cally, but W, (&, 9), W,(,¢), ... being obtainable in a closed form [4]. Here
AEB)=2vL VQ&/U r% is the so-called characteristic parameter [4], which is pro-
portional to the ratio 3 (x)/r, (x), while &, v, and ¢ are the independent variables:

Xx

2
E==~~—l—« Urgdx,n: U"’L(H r >, (Pz-l‘r“z
v L2 yLV2E 27, A2
0

2. Thermometer problem
To solve the thermometer problem when A (§)<C1, a dimension-less tem-
perature R(§,n) is introduced in the usual way [1}:
U2
@) T=T+-—[RE n—1]
2gcy

where T;=T,(x)+U2(x)/2gc,=const, ie., the so-called total temperature.
Hence,

1 A _ -
3) .—};—(1 +1A) Rm+(F+2iFg+~};)Rn-2£F,}RE 2B FyR=

= —2(1+71A) Fry
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with the following boundary conditions:
R,=0 when 7=0
R -0 when %n—oo.

In this equation 8(£)=2&vL2U’/U2r{ is the well known [5] principal
function. If it is assumed that the solution of (3) is in the form of:

REWD=R,En+R EDAE)+ - -
then:

1

) Rymn+ Fo+2E8Fog) Ryy—2E Fon Ryz—2B(8) For Ry = —2 Fou
1

?Rlnn'F(Fo”FZEFoZ) Ri—28Fy, Rig—[2B () +Y(E)Fo, R =

1 1
— —4Fom Fim—21 Fm—— an—[; Ty @F, +

+22F15}RM+2£FMR05+2B(a)FmRo

with the following boundary conditions:
Ry,=R,;,=0 when 7=0
Ry—0, R,—0 when m—oo .

In addition to the principal function f(£) in the last equation there also
appears the well known [4] so-called new principal function v (§)=2EA" (E)/A (§)-

It can be shown that for P=1:

Ry (E,m)=1—F5, (%, 1).

The function R, (£, 7) itself represents a solution to the problem when the body
transverse curvature effect is neglected, that is, that function represents a solu-
tion to the two-dimensional problem. It is interesting to note that Wrage [1]
failed to see this simple relationship existing between the velocity and tempe-
rature fields, so that a considerable part of his paper is devoted to the evalua-
tion of a system of universal functions for R, (&,n). Also, it can be shown that

Rl (E’ 7)): _2F071 (g’ 'Y))F”,(E, 7])

RE,m)=1—F; (7).

If A(§)>1, the dimensionless temperature R(&,¢) is introduced in the
same manner (2), so that the following equation is obtained:

1 1
o Rw+{;+[1+¥(£)l W+25W5]R<p—2iW;pRa—2F3(i) W, R-

and finally:

=—2¢ Wécp
with the following boundary conditions:

R,=0 when ¢=1/A2

R—0 when ¢@-—>o0
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the solution of this equation being P=1:

RE@=1-W, ().

For the majority of gases, P=1 and, hence, the solutions obtained are
of practical value. If P==1, these solutions are to be sought numerically for
each individual P, since it is known [I] that the energy equation (1) cannot
be set free of the influence of the Prandtl number.

In a special case, when U (x)==¢x™, and r,(x)=ax®, the principal func-
tions B(&), and y(£), are reduced to constants, so that for A (§)>1 the follo-
wing is obtained:

RE, 9=

'Cm+DerG2m+1,1;0 -{—O( 1 )
Ina In2 p

where: {=2¢/(m+2n+1).
In Fig. 1, the temperature profiles are given for various values of the
characteristic parameter A (§) provided m=n=0 and P=1. It can be seen that
due to the body transverse curvature
ul effect, the temperature in the imme-
diate vicinity of the body decreases,
while at some distance from the body,
it increases. The temperatures in the
vicinity of the body, when A (§)>1,
should be taken with a certain amount
of reserve, because it is known [4]
that the convergence of the asymp-
totic series for W, is slow, since the
internal boundary condition for W,
is satisfied when all the terms of the
series are taken into account.

3. Cooling problem

The cooling problem is solved
by introducing the so-called additional
function (Zusatzfunktion) H(&,7) in

5 0'5 7R the following way:
Fig. 1. Uz(x
ig DT =T, + D RE D+ HE )
when A (§)<1, this function will satisfy the equation: ?
1 .
(5) - L+ Hm+(F+2§F§+%)H,,-2£F,, Hy=0

the boundary conditions for which are as follows:
H=H,(&) when 7=0

H—0 when %-»>o0
where:
U
Hyy () =Ty () —T,— 5

R(E,0)

&Cyp
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and T,(E) — for the time being an arbitrary distribution of the body tem-
perature. It is readily seen that H,(§)=T,(E)—T; for P=1.

If the solution of (5) is assumed to be in the form:

HED=H,EN+H EDAE)+ -
then it is obtained

1
©) 5 Hom+ (Fo+ 28 Fop) Hyq =28 For Hog=0

1
— Him + (Fy 28 Fog) Hy—2 & Foy Hie—1 () Fo Hy = -—{§— Hypy—
1
_[F1+22F1§+"{(£) F,+~E;]HM+2§FMH05

with the following boundary conditions
Hy=H, &), H =0 when 7=0

As in the case of the thermometer problem, the function H,(E,n) itself
represents a solution to the two-dimensional problem. In order to make (6)
possible for the solution, it is necessary [1] to assume function H,(§) in the
following form:

Hy®)=3 ai &7
i=0 2

where «;» are the constants. This expression represents a certain restriction on
possible distributions of the body temperatures T, (£), but this restriction, as
shown by Wrage [1], is of no great importance. The universal functions for
H, (€, ) have already been derived [1, 2]. The universal function for H, (&, n) can
also be derived in exactly the same way, but this will not be undertaken
here because of lack of space.

For A (E)>1, the additional function H(£,¢@) will satisfy the equation:

1
) ?tpHW+{%+{1+Y(i)]W+2EWg}H¢—2£W@H5zO

the boundary conditions of which are
H=H,()  when o=1/j?
H—~>0 when ¢-—>o0,

If the solution of this equation is assumed to be in the form of an
asymptotic series:

(8) H(aa CP)’—'HO (&9 'P)+

H &9 " H, (&, 9) R
InA@E) In2A®

e
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then a recursive system of differential equations will be obtained for the
determination of unknown functions H, (&, ), H (£, 9),..., each of which can
be represented in the form of:

o A
Q) HEQ=>H ;@8 i=0,1,2, ...

J=0 2

It is well known [4] that in this case of flow, the behaviour of the
velocity profile in the immediate vicinity of the body is of a logarithmic nature.
In view of the fact that the velocity profiles have a similar feature, it is
quite natural to assume that the temperature field in the immediate vicinity
of the body behaves logarithmically, i.e., that for small ¢:

H  (p~K +fo Ing (4,7=0,1,2,..))
Rl ¥

2 2 2
where K_j and }L‘th are constants. On the body surface itself, there shall be:

1”2*‘ £—2-

H j (*E—>ﬂKf —*2L; 1{125 .
2 i iy

7=

2 \A
Now, in order to satisfy the internal boundary condition of (7), there must be

EA
L (K;—2L Inp)E? i
:—2— l-»z« o 7
=>a;§
i,jz() lni A igﬂ P

or, after equating the coefficients adjacent to the terms of the same degree
in terms of InA:

1
—2Ly—2L (&' —Lyk—- =0
z

1
2L ) a2 L

2 2

A
=+, 62 +ay G-
7

(Koo—2 Lyg) + (Ko

1
(Kpo—2 L2°)+(KI_;“~»2 L 1)52 F(Ky—2L)E+ =0
2

2

Since all these latest equations must be satisfied for any &, it is obvious that
the following must be true:

Loi_zo
2
. - j=0,1,2,...
(10) K,—2L ;=2
2 2 2 i=1,2,3,...
K. =21L ,
i% z+1.-§
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Differential equations for the first two terms of the series (8) will be:

1 1
(1 -;@wa{;ﬂlw(i)] @} Hyg—2E Hyz=0

«%@Hmw{%m @] cp} Hyp—28 Hyg=

(12) =‘“{[1+Y(g)]W1+2gW1&}Hw+2aWwHOE
where the external boundary condition is:
@-»o0: Hy—0, H—0.

The internal boundary condition, however, will be satisfied by the fulfilment
of the equations (10).

If the solution of (11) is assumed to be in the form of Gortler’s series
(9), the following will be obtained for the first term

1 " 1 ,
(13) ’;"CPHOO +[; +(1+v) (p]HoomO

with the following boundary conditions

Hyg~Ky when ¢->0

Hyy—0 when ¢@-»o0
where vy, is the first term in the expansion of the principal function y (&) [4]
(for solid bodies of revolution with the forward stagnation point y,=-—1/2).
If the following substitutions of the variables are introduced:
(14) (+y)Pe=L, Hy @ =et@ @)

(13) is reduced to a confluent hypergeometric equation:
(" +(1-O—D=0
the general solution of which is as follows:
Q=M (1, ;) +NG(1, 1;9).

If the external boundary condition is applied, it follows that there must be
M =0; if, however, the internal boundary condition is applied, it leads to the
following relation:

—N (In T+ yo)~Kyo

which can be satisfied only if simultaneously N=0, K, =0, and therefore; the
equations (13), together with the above given boundary conditions, will have
only their trivial solutions. It is possible to show in exactly the same way that
equations for the remaining coefficients of the Gortler series for the function
H,(%,9) will have only their trivial solutions, i.e.,

(13) H, (€.9)=0, Ko_j_z{)
2
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which changes to some extent the second of Eq. (10), in such a way that it

will read as follows:
1

= %

L
72 3

The function H, (%, ) in itself represents a solution of the problem in
the so-called first approximation. It is not difficult to see that in the first
approximation, the temperature field is constant when A (E)>1, both in the
thermometer problem and in the cooling problem, that is the temperature in
the boundary layer at each point is equal to the temperature on its outer
boundary. This result is in full agreement with the corresponding result obtai-
ned in investigating the problem of velocity boundary layer on slender bodies
of revolution {4].

If (15) are taken into consideration and the solution of (12) is attempted
in the form of the Gortler series (9); the first term is obtained in the form of

1 . 1 ,
(16) ?@H10+[?+(1 +Yo)<P:|Hlo=0

with the following boundary conditions:
Hy~K,+Lying when o¢—0
H,—0 when o¢-—>o0.

The general solution of this equation is same as the one for the equation
(13); the corresponding boundary conditions will lead to:

M=0, —N(In{+y)~K;g+L,lng
whence it follows:
N=—Ljg=ay/2

Km=3‘2£[y+1np+1n(1 + o).
Hence, the solution of (16) will be as follows:
%o
Hlo(‘P)=”2*'e_C G(1,1;9).

The equation for the second term of the series for the function H, (&, )
will be non-homogeneous:

1 . 1 . .
with the following boundary conditions:
H (~K (+L 1Ing when ¢—0
15 1y T

H,y—0 when ¢— oo,
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The application of some recurrent relations which satisfy confluent hyper-
geometric functions of the second kind [6] will prove that:

4 [+
Hig= —2 e-%
¢ 10 )
thus, the general solution of (17) will be:

H :Me—C(D<2+Y°—, 1;C)+Ne—CG(2+Y° : 1;c>——°‘””2 et
'z L+, T+, 2(2+7o)

When the boundary conditions are used, the last equation will yield:

M=0, Nv——I‘(ZJrYO)L ,:3‘1’2_1‘(“_“’)
L+v,/ 'z 2 L+,

o 24y %o Y1/2
K =% 4,( °)+2y+lnP+ln(1+ ) R 7
'z 2 1+, Yo 2(2+ o)

and the solution of (17) will finally be as follows:

H | (¢)=e= %12 F(2+Y°)G<2+Y°, I;Z)——%Ym '
13 2 L+, L+, 2(2+v0)

The remaining coefficients of the Gortler series for the function H, (§,9) can
be obtained in exactly the same way, but the working out of these coefficients
quickly becomes extremely complicated, so it is probably much more econo-
mical to use a computing machine.

In the cooling problem, too, there exists a special case where the tempe-
rature field can be expressed directly by means of a velocity field. This is the
case where P=1, U (x)=const. and T,,=const. Then,

u
H=(T,—T) (1—5).
4. Example

It seems that only the problem of a flow past a circular cylinder has
been solved so far when U (x) =U_ =const. and T, =const. This problem was
solved by Seban and Bond [7] for the region in which & (x)/r,(x)<<1 when
P=0,72, and by Bourne and Davies [8] for the region in which & (x)/r, (x)>1
when P takes any value, but they all neglected the heat due to viscosity and
compressibility

For the case where P=1 we obtain the following values for the ratio of
Nusselt’s number and the square root of the local Reynolds number:

Ne L L p)\E Dvx -

= | —— 2

VR, V2(1 5 Ec)[Fo 0) + \/Uw b2F1 (O)], IN(3E !
4vx

R R v+In2
wbl‘ Uy, b2

N,

VR
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If the heat due to the viscosity and the compressibility is neglected ,then
it should be put formally that E,-=0. Bourne and Davies obtained for such a
case the following results:

4vx
N, U, b
* ‘/j; - 4wvx T+ 4va
I In —n
\%ﬁ U, b2 U, b?
P=d : . .
A O The results are given graphi-

cally in Fig. 2. For A(§)=1 the
results are obtained by interpolation.
It is easy to see that for E,=2, the
body involved behaves as it if were
thermally insulated, but if E,>2, the
heat is convected from the fluid to
—‘zw—-':_;;:_ the body regardless of the fact that
Ty>T,. The curve — . — . — repre-
sents the results obtained by Bourne
and Davies, while the curve —— —
represents the solution for the case
where the transverse curvature ef-
Fig. 2 fect is neglected for E,=2. It is
seen that this curve gives a good ap-
proximation only in the region in which A () <1. Also, it can be observed
that in region in which A (§)>1, a very intensive exchange of heat between
the body and the fluid takes place.
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