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1. There are various ways of generating of ordered sets. The simplest
way is certainly to consider any system S of sets ordered by the relation O
or by C. In particular, the power-sets PX (X being a set) yield the ordered
sets (PX, D) as the most general ordered sets, every ordered set being similar
to a part of some (PX, D). The cardinal ordering of any set {0,1}¥ furnishes
the same possibility.

The procedure of intercalation, of inoculation, of hugging yields new
ordered sets; it is then interesting how some properties of the obtained output
set depend on similar properties of the given input sets.

In the paper we examine the foregoing procedures and examine the pro-
perty of normality of ramified sets and of trees.

The w,-—ordinal dimension of A,~sets in the sense of Komm [5] is
determined to be ke, and the problem is formulated as to whether there
should be

dy A, <<k o,
2. A sufficient condition for the normality of trees.

2.1 Degenerated ordered sets. An ordered set (0,<) is called degenerated,
provided the comparability relation is transitive in the set (0,<).

2.2. Normal ordered sets. An ordered set is called normal if it has the
same cardinality as some of its degenerated subsets.

2.3, Theorem. Let o, be any regular non countable ordinal number,
Every tree T of cardinality >k in which, for some w,<o, there isa strictly
increasing function f|T into a k w, -separable chain C contains an antichain
of the cardinality k w,.

Proof. Let r, r, ry, (n<co;) be any simply ordered everywhere dense
subset of C of cardinality kw,. For every n<ay let T* be the set of all the
points of C satisfying

fX < r‘lb <f(b (a'))a

B kX =cardinality of X; 4, X is the minimal cardinal number » such that there is a
system of n linear orderings of X, the superprosition of which produces the given ordering
(X<,
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where for any a & T we denote by b(ag) any successor of a (there is no
restriction to assume that every ¢ & T has infinitely many (even kw,) succes-
sors). Obviously

T=,T"(n<o,) and
kT=3, kT? (n<w.).

The number k7 being regular supposedly, there exists some index m< e, such
that kT =kT™. Let us prove that 77 contains an antichain of cardinality & w,,.
We can assume that the tree is of cardinality kw, that its every row as wel}
as every chain are <ko, and consequently y7T™=c¢,,. Moreover, one can
suppose that every member ‘a of T™ has k v, successors. By induction argument,
(cf. [5] p. 486) one proves the existence of an w, -sequence

a; & ITm E<r=0y)
such that the numbers {:, defined by a;& Ry, T form a strictly increasing
o, -sequence and that the numbers #; defined by b(a:) & R, T satisfy
G<m<ten (E<wy).

One proves then that the points b(a)(§<w,) form a requested antichain.
3. A theorem on ramified sets.

3.1. Definition. Any ordered set (R, <) such that for every x © R

def
the set R(-,x]={yly & R, y<x} is simply ordered, is called a ramified set.
Ramified sets generalize the trees. As an exercise one proves the following.

3.1.1. If D is a degenerated subset of a ramified set (R, <), then the set

oD(R):=U,R(.,x] (x&€D)

is a degenerated subset of (R,<).

3.2. Theorem. If a ramified set R is cofinal to a normal tree T, such
that for every subset S C T of cardinality ¢f kR one has

0! kU R[s]=kR, (sES),
then the set (R<) is normal.

Proof. Since for every x & R the set R(.,x] is simply ordered we might
assume that ,

2 kR{(.,x}<kR (x & R).
Now, by the definition of cofinality of R to T we have
(3) R=UzR(.,x], (x<£T).

3.2.1 First case: kR is regular. Then the relations (1), (2) jointly
with the regularity of kR imply kR=4T. Now, let us consider the degenerated
subset T, of 7T of the cardinality &7. By hypothesis, such a set exists. The
number k7" being regular, every set Tyla, -) with ¢ & R, T, being a chain thus
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<kT, we conclude that kR,T,=kT,=kR. Now, for every a & R, T, let a’ be
any point of R such that @ <a'; then the set R'y:={d'|a’ & R,T,} is a reques-
ted antichain of R and obviously kRg=kR, T, =kT,=kR.

3.2.2. Second case: kR is singular. Of course, there is no restric-
tion to assume that the cardinality of kT be a regular number kw, The set
T being normal, let then T, be a degenerated subset of T such that kT, = kT.
Then we have two cases:

3.2.2.1. First case: The first row R, 7, of T, has kT, members. Since
(1) and (2) hold for every s € R, T,, we conclude easily that in every Ris, - ),
(s & Ry T,) there exists a degenerated set of any cardinality <kR. Now, let us
consider a well-ordering ‘

Toslis vov s bysen (% <<tg)

of the set R, T, and any eg-sequence of cardinals k, such that
G ko<<kR and g ky=kR, (2a<wp).

In every Rlt,, ), (x<<wg) there exists some degenerated subset D, of cardinality
>Kky; then the set D= U D, (a<<wg) is a requested degenerated subset of R of
&%
cardinality AR =Xk, (¢ <wg).
o

3.2.2.2. Second case: kR,T,<kT,. The number k7 being regular,
one concludes that for some ¢ ¢- R, T, we have

(%) kTola, )= kT,.

Now, the set T,[a,-) is well-ordered; T, being degenerated. Let us con-
sider the chains

R(-,x], (x & Tyla, -)) and their union
4 U R(' ,X}, (X ({”.2 Ti){aa’))*
The set 4 is a simply ordered subset of (R;<); if kd=kR, A is a

requested subset of {R<). Therefore, we have still to consider the case that
kA<kR. By hypothesis (1) the relation (1) holds for S=1T,[a,-), i.e.

kLSJR(S)mkR (s € Tola, ).

Consequently, there is a strictly increasing g -sequence of points a, & T'yla, )
and a strictly increasing wg-tequence of cardinals k, with k4<k,< kR such that

kR[ay,-)=ky and Xk, =kR, (a<<wyp).
We consider the sets

def
By = Ra, )\ R [ty:y,)-
One has
sup kB,=kR.
KA
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Therefore, it is possible to choose degenerated sets

D, < B,
such that
sup kD,=kR.
Now, the set
B= Ve Dex (“ <(‘)B)

is degenerated and has the cardinality kR, what completes the proof of the
theorem.

3.3. Transition: trees — ramified sets. By intercalation of chains between
consecutive members of a tree 7 one gets a ramified set; in other words, for
any ordered pair (x,)) of consecutive members of a tree 7 let ¢(x,y) be an
ordered set — empty or non empty; if the sets c¢(x,y) are pairwise disjoint
and in no order relation, we intercalate ¢ (x,y) between the points x,y of T;if
x<_y, the set succeeds to every member of T(.,x] and preceeds to every
member of T'(y,.). Let (T, ¢) be the ordered set so obtained.

Theorem. The set (T,¢) is ramified (a tree) if and only if for every
{x. 9}« C (T, <) the set ¢(x,y) is a totally (welly ordered set.

4. Isomorph x-dimension of ordered sets.

4.1. Definition of it-dim. Let £ be the type of order of some linearly
ordered set. If for some ordered set (0, <) there exists a family F of linear
extensions (0,<,) of (0,<), each of order type 1, and such that for any (g, b)
€02 one has a<d if and ounly if a<,b for every r& F, then the minimal
cardinality kF of all such families F is called the isomorph +-dimension of
(0,<) and is denoted i wdim (0, <).

4.1.1. E.g. for any finite ordered set (0,<), if k0=n, then n-dim (0,<)
exists.

4.2. Theorem. If
0 (g, <) is any suborder of the linearly ordered set
)] (e, <),

then iw,-dim (Iwy;<') exists.
More generally we have the following.

4.3. Theorem. In order that for some ordered set

() (0,<’) the iwy-dim (0,<") exists, it is necessary and sufficient
that there is some one-to-one increasing mapping i of (1) into the chain
@ (T, <).

Obviously, the condition of the theorem is necessary. Let us prove that
the condition of the theorem is also sufficient: if there exists some (1.1)-mapping
i of (1) into (2), then there exists a family of w,extensions of (1), the super-
position of which yields the order (1). :

For this purpose it is sufficient to prove that every antichain {a, b}
consisting of 2 incomparable points of (1) is obtainable by such w,-extensions
of (1). Let ig=o0,, ib=0, and suppose o0,<0,. The antidomain O =i0 of the
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set O is the union of the 2-point-set {0,,0,}, of the interval O'(o,,0,), of the
set D'=0"(.,0;) and of the set E'=0(0,,.). The set I=0"(0;,0,) is the
union of the following 3 subsets:

(3)  A=i0(@a- )< NLB =i0( ,b)<’ NI and C'=i[CO[al<' N CObl< NI

The domains of the corresponding subfunctions are well determined. Put
X=i1X", ie.

4 A=i14,B=i1B,C=i1C,D=i1D E=i1E

There is no restriction to suppose
&) Ja> = —fa+fb;

as a matter of fact, if this condition were not satisfied, we would consider the
function x—>f" x=fx+(—fa+fB)+1, and this function f’ would satisfy the
condition f'a>—f'a+f'b. This being so, let n be a member of [wy:=
such that

(6) 0> N> —0,+ 0y

we define a function g|7 in the following way:

U] ga=fb=o0,,gb=0,=fa
gld=—n+f|A, g|B=—n+f|B, g|C=f|C, g|D=—n+f|D,
glE=n+glE.

Let us define the ordering (0;<,) in such a way that for (x,y) we put
%) X< yegx<gy.
The relation <, extends the relation <’ in (0, <), i.e. for (x,y) & 02

9 x<'y=>gx<y gy, ie. g,<gy.
The implication (9) is obvious if {x,y} belongs to any of the sets
(10) A,B,C,D,E.

Therefore, we have to prove (9) if only one of the members of {x,y}
belongs to one of the sets (10), the another being in some another member
of (10) or in {o,,0,}. E.g. assume x € 4,y € B; then gx= —n+fx, gy=—n+
+fy. Since by hypothesis x<C'y so is fx<fy and consequently

—R+fx<<—n-+fy, ie. gx<gy, i.e. x<,p.

In all other cases one proves (9) and also that the mapping g|O is
one-to-one. Therefore, <, is an order relation in S; in particular, we have
ga>gh, and this jointly with a<Cb proves that the superposition of the orde-
rings (0,<) and (0,<,) yields the incomparability of ¢,5 in (0;<").

4.4. Problem. Probably, in 4.2 and 4.3 it is legitimate to replace every-
where , by @, for any ordinal «.

5. On permutations of ordered sets.
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5.1. Let (0,<) be any ordered set and O, the set of ali the one-to-one
mappings of O into itself. For any subset F O, we define the order < of
O in the following way:

x<pyefx<fy for every f& F.

Obviously, < Is the total unorder for F=0,; for the identity transformation
I of O the relation <1 equals <.

5.2. Problem. Is every suborder (0,<’) of (0,<) obtainable as (0; < p)
SJor some F CO.?

The answer is — vyes! at least for (Juw,,<) and probably for every
(T, <)

5.3. Theorem {(Superposition of <k w, orderings of Iw,). Let o, be
regular; any system F of cardinality <ko, of total w,-orderings of the set
Li=Tw,={0,1,2, ... 0, .. .Jecqu, vields by superposition an order (0,<) of I,
possessing an w,-sequence in natural order.

Proof. Let F={f:}; be a normal well order of F; let us define the
o, -sequence (1) gz of numbers < w, in the following way: let a,=0; let a, be
the first member of I, coming after a, in every member of F. Let o<f<a,
and let suppose that the strictly increasing B-sequence a, («<Cf) be defined; we
define ag as the first member of I, coming after {a,}, in every member of F;
since kB<kw, and since w, is regular, the existence of ag is guaranted. By
induction arguments the sequence (1) of £ o, points in strictly increasing
order is defined. Q. E. D.

5.4. Theorem. Let w, be regular. The ordinal w,dimension of every

A,-set exists and equals k w, (c¢f. Problem in 4.4.).

As to the definition of A,-sets s. [5]. The existence of the w,-dimension
of 4, follows from the fact that (4,,<,) is obtainable by a family of permuta-
tions of {(Jw,,<) on the one hand and on the other hand of the fact that for
any permutation p of the chain Jw, the chain (Jw,,<,) is of the order type
o,. Finally, by 4.3. the w,dimension is not <k w, (cf. problem in 4.4).

5.6. Problem. If a tree (I,<) is the union of <k w, antichains, is then
the ordinal dimension dyT of the tree <k wy?

5.7. Problem. More generally, if an ordered set (0,<) is the union
of a family of <& of its antichains, is then 4,(0,<)< b5, i.e. is there a system
F of cardinality <b of total orderings of the set O such that x<y in (0,<)
if and only if x<, y for every ordering <,& F.

6. Hugging and inoculation of ordered sets.

6.1. Let. (0,<) be an ordered set. Let f| O be any mapping such that to
every point x of O one is associated a single ordered pair (0,,1,) of ordered
sets. We denote by O®f the ordered set obtained from (0, <) in such a way
that O be extended by sets o,,1, and ordered in such a way that o, prece-
des x,x precedes 1, for every x & O and that o,, 1, be incomparable to O (-, x)
and to O(x,.) respectively. In particular, o, precedes 1, in O®f for every
x e 0.

6.1.1. The set O®f might be defined to comsist of points of O and of
ordered pairs (a,b) such that either a0 and 61, or =0 and a0,
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The ordering of O®f is performed in the following way: If 4,BC O®f then
A< B means exactly the following:

if. 4,B& O, then A<B in (0,<);

if A O, and B=(a,b), then a & 0, A< a in (0,<) and b 1,;

if B€0O, and A=(a,b), then b= 0,b< B in (0,<) and a& O,.

One verifies easily the following:

6.1.2. Lemma. For any ordered set (O,<) and any mapping f defined
in 6.1. the set (O®/f,<) is an extension of (0,<); in particular, for distinct
points x,y & O, the sets 0,,0, are mutually incomparable as well as are the
sets 1,,1,; one has 0,<1, if and only if x<y; the sets 1,,0, are incomparable
mutually.

6.1.3. The processus (0, <) f— (O8f: <) is called the hugging or hymeriza-
tion (¢f[2]p. 15) or the double inoculation of the sets fx to the set (0,<).

6.2. Inoculation. If o, equals o identically, the hugging is called the ino-
culation or grafting in (0,<). If 1,= @, the hugging of fx to x is called the
inverse inoculation of the set 0, at the point x of 0. If |0 =X, Y) (constant),
the fhugging is denoted by (X<« 0—7Y); instead of (@« 0—Y) and (X0
— @) we write also (O—Y), and (X <-0) respectively.

6.2.1. Instead of X« (X<« 0) we shall write 2 X« O in general, we define
(g+ DNX<0 to be X(xX<0) and
AYX—0:= UgBX<0 (B<n)

for any ordinal « and any limit ordinal A.
Analogously, we put

(O—>Y)>»Y)=0x2Y
O->aY)y=0->(+1)Y
O—>AY={JgO—>BY) B<).

6.2.2. Convention. If (a,b,¢) is any ordered triplet of ordered types,
we define a<b—c to mean A<+ B—C, where (4,B,C) is an ordered triplet
of ordered sets of the ordered types a,b, ¢ respectively.

6.2.3. Example. If (4,B) is an ordered pair of antichains and B any

ordinal, then T:=4—B B is a tree; the first row of T is A4; the rank y=yT
of T'is inf. {B+ 1, w,}; for every positive integer n<y T one has

kR, T =(kB—n+ 1) kA (kB)".

The proof of the last equality is performed by induction argument on =

6.2.4. If (0,<) as well as fx for every x €S are ramified (ranked) so
is also the set (O®f;<); in particular, if (0,<) and fx is a tree for every
x & 0, then so is also the set O®f.

6.3. Theorem. Let (0,<) be ordered and x S O->fx=(041,) lke in
6.1; then every regular ordinal number v which is representable in Oxf is also
representable in (0,<) or in O,<x<1, for some x&0.
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