Nouvelle série, tome 9 (23), 1969. pp. 189-198.

ANALYTIC AND C-ANALYTIC FUNCTIONS

Jovan D. Kečkić

(Communicated November 22, 1968)

Ι

1. For a complex function

$$w = u(x, y) + iv(x, y)$$

where u, v are differentiable real functions, the operator B can be defined: [1]

$$B \stackrel{\text{def}}{=} \frac{\partial}{\partial x} + i \frac{\partial}{\partial y}.$$

In other words

$$Bw = \frac{\partial w}{\partial x} + i \frac{\partial w}{\partial y} = \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right).$$

The following properties of the operator B can be easily checked:

$$B(w_1 + w_2) = Bw_1 + Bw_2$$

$$Bw_1 w_2 = w_1 Bw_2 + w_2 Bw_1$$

$$Bz = 0$$

$$Bz = 2$$

$$Bf(w) = f'(w) Bw$$

$$Bf(w_1, w_2) = \frac{\partial f}{\partial w_2} Bw_1 + \frac{\partial f}{\partial w_2} Bw_2$$

As a special case, we have

(1)
$$Bw(z, \overline{z}) = \frac{\partial w}{\partial z} Bz + \frac{\partial w}{\partial \overline{z}} B\overline{z} = 2 \frac{\partial w}{\partial \overline{z}}.$$

Besides the operator B, an other operator, operator C, can be defined for the function w

$$C \stackrel{\mathrm{def}}{=} \frac{\partial}{\partial x} - i \frac{\partial}{\partial y};$$

in other words

$$Cw = \frac{\partial w}{\partial x} - i \frac{\partial w}{\partial y} = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right).$$

Operator C has properties analogous to those of B:

$$C(w_1 + w_2) = Cw_1 + Cw_2$$

$$Cw_1 w_2 = w_1 Cw_2 + w_2 Cw_1$$

$$Cz = 2$$

$$C\overline{z} = 0$$

$$Cf(w) = f'(w) Cw$$

$$Cf(w_1, w_2) = \frac{\partial f}{\partial w_1} Cw_1 + \frac{\partial f}{\partial w_2} Cw_2.$$

As a special case, we have

(1')
$$Cw(z,\overline{z}) = \frac{\partial w}{\partial z}Cz + \frac{\partial w}{\partial \overline{z}}C\overline{z} = 2\frac{\partial w}{\partial z}.$$

2. In his doctorate dissertation B. Riemann quotes the following formula [2]

(2)
$$\frac{dw}{dz} = \frac{1}{2} \left[\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \right] + \frac{1}{2} \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} + i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right) \right] e^{-2i\varphi}$$

where $dz = \varepsilon e^{i\varphi}$.

If the function w is thought of as a function of two *independent* variables z and \overline{z} , i. e. $w = w(z, \overline{z})$, by (1) and (1') we see that formula (2) has the following form

$$\frac{dw}{dz} = \frac{\partial w}{\partial z} + \frac{\partial w}{\partial \bar{z}} e^{-2i\varphi}$$

i. e.
$$dw = \frac{\partial w}{\partial z} dz + \frac{\partial w}{\partial \overline{z}} \varepsilon e^{-i\varphi}, \text{ or [3]}$$

(3)
$$dw = \frac{\partial w}{\partial z} dz + \frac{\partial w}{\partial \overline{z}} d\overline{z}$$

The expression $\frac{dw}{dz}$ will be independent of the direction φ if and only if $\frac{\partial w}{\partial z} = 0$.

This condition represents the famous Cauchy-Riemann equations

(4)
$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0; \qquad \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = 0.$$

A complex function w whose real and imaginary parts satisfy equations (4) is called, as usual, an analytic function. For such a function we shall say that it belongs to class A, i. e.

$$w \in A \Leftrightarrow \frac{\partial w}{\partial \bar{z}} = 0.$$

Consider again formula (3). Dividing by $d\overline{z}$ we get

$$\frac{dw}{d\overline{z}} = \frac{\partial w}{\partial z} \frac{dz}{d\overline{z}} + \frac{\partial w}{\partial \overline{z}}$$

i. e.

$$\frac{dw}{d\overline{z}} = \frac{\partial w}{\partial z} e^{2i\varphi} + \frac{\partial w}{\partial \overline{z}}.$$

Clearly, the expression $\frac{dw}{d\overline{z}}$ will be independent of the direction φ if and

only if $\frac{\partial w}{\partial z} = 0$, or

(5)
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0; \qquad \frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = 0.$$

For the function w which has this property we shall say that it is conjugately analytic (c-analytic in further text), or that it belongs to class \overline{A} ; in other words

$$w \in \overline{A} \stackrel{\text{def}}{\Leftrightarrow} \frac{\partial w}{\partial z} = 0.$$

Theorem 1. The only elements of the set $A \cap \overline{A}$ are constants.

This can easily be seen by solving the system (4) — (5).

Theorem 2. A necessary and sufficient condition for the function $w(z, \overline{z})$ to be analytic is that it does not depend on \overline{z} .

Proof. $w(z, \overline{z}) \in A$ if and only if $\frac{\partial w}{\partial \overline{z}} = 0$, which means that w does not depend on \overline{z} .

Theorem 2'. A necessary and sufficient condition for the function $w(z,\overline{z})$ to be c-analytic is that it does not depend on z.

In general case, $w(z, \overline{z}) \neq w(\overline{z}, z)$, even if $w \in A$.

(In fact if
$$w(z, \overline{z}) = u(x, y) + i v(x, y)$$
, then
$$w(z, \overline{z}) = \overline{w(z, \overline{z})}$$

if and only if u(x, y) is even and v(x, y) is odd, both with respect to y.) However, if $f(z) \in A$, then both $f(\overline{z})$ and $\overline{f(z)}$ belong to \overline{A} (even though they are not equal).

Theorem 3. Let $f(z) \in A$. Then $f(\overline{z}) \in \overline{A}$.

Proof. By assumption, $f(z) \in A$ and therefore f(z) does not depend on \overline{z} (theorem 2). Replacing each appearance of the variable z by \overline{z} , we obtain the function $f(\overline{z})$ which does not depend on z, and according to theorem 2', $f(\overline{z}) \in \overline{A}$.

Theorem 4. Let $f(z) \in A$. Then $f(\overline{z}) \in \overline{A}$.

Proof. Let f(z) = u(x, y) + iv(x, y). Then $\overline{f(z)} = u(x, y) - iv(x, y)$. Since $f(z) \in A$, we have

$$\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} = 0;$$
 $\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} = 0.$

Denote -v(x, y) by V(x, y). Then $\overline{f(z)} = u(x, y) + iV(x, y)$, and for the functions u, V we have

$$\frac{\partial u}{\partial x} + \frac{\partial V}{\partial y} = 0; \qquad \frac{\partial V}{\partial x} - \frac{\partial u}{\partial y} = 0,$$

which means that $\overline{f(z)} \in \overline{A}$.

The following analogues can also be easily proved:

Theorem 3'. Let $f(\overline{z}) \in \overline{A}$. Then $f(z) \in A$.

Theorem 4'. Let $f(\overline{z}) \in A$. Then $\overline{f(\overline{z})} \in A$.

According to the definitions of operators B, C, we have:

$$w \in A \Leftrightarrow Bw = 0$$

$$w \in \overline{A} \Leftrightarrow Cw = 0.$$

Besides these operators, we can introduce the operators \overline{B} , \overline{C} :

$$\overline{B} \stackrel{\text{def}}{=} \frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} - i \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \right),$$

$$\overline{C} \stackrel{\text{def}}{=} \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} - i \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right);$$

Therefore, a function w is analytic if and only if one of the following conditions holds:

$$Bw = 0$$
, $\overline{B}w = 0$, $C\overline{w} = 0$, $\overline{C}\overline{w} = 0$.

Analogously, a function w is c-analytic if and only if one of the following conditions holds:

$$Cw = 0$$
, $\overline{C}w = 0$, $B\overline{w} = 0$, $\overline{B}\overline{w} = 0$.

3. We state two more obvious theorems.

Theorem 5. If $w \in \overline{A}$, then there is one and only one function $f(z) \in A$ such that $w = f(\overline{z})$.

Theorem 5'. If $w \in A$, then there is one and only one function $f(z) \in \overline{A}$ such that w = f(z).

According to the above theorems, it is clear that there is a certain "isomorphism" between the sets A and \overline{A} , realized by a formal replacement of the symbol \overline{z} by the symbol \overline{z} . Having this in mind it is not difficult to see that all the theorems of the theory of analytic functions have their analogue in the theory of c-analytic functions. Also, all the concepts defined in the theory of analytic functions can be introduced for c-analytic functions, e. g. integral, isolated singularity, residue, etc. It is convenient to call them c-integral, c-isolated singularity, c-residue, etc.

As an example, we quote the Cauchy-Goursat theorem for c-analytic functions.

Theorem 6. If a function f(z) is c-analytic in a simply-connected region R, and if C is a closed contour lying entirely within R, then

$$\int_C f(\overline{z}) \, d\overline{z} = 0.$$

Proof. Let $\overline{f}(z) = u(x, y) + i v(x, y)$. Then

$$\int_{C} f(\overline{z}) d\overline{z} = \int_{C} (u+iv) (dx-idy) = \int_{C} udx + vdy + i \int_{C} vdx - vdy.$$

Using Green's theorem, we have

$$\int_{C} f(\overline{z}) d\overline{z} = \int_{C} \int \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dx dy - i \int_{C} \int \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dx dy$$

the double integrals being taken over the area enclosed by C.

Considering equations (5) we conclude that $\int_{C} f(\overline{z}) d\overline{z} = 0$.

The following schema illustrates the relations between the sets K, A, A, C, where K denotes the set of all complex functions and C the set of all constants. To every function $f(z) \in A$, corresponds one and only one function $f(z) \in \overline{A}$, and vice versa. Constants remain fixed under that "isomorphism".

H

1. It has been shown [4] that Goursat's functions

$$G(z,\overline{z})=f(z)+\overline{z}g(z); f, g\in A$$

have the property that their real and imaginary parts satisfy Maxwell's equations

$$\Delta^2 u = 0$$
, $\Delta^2 v = 0$, $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}$.

It has also been shown that they are the only non-analytic functions whose *deviation from being analytic*, B, is an analytic function, i. e. that they are the only functions for which $B^2G = 0$ holds [5].

In this part we show that the functions of the form

$$f(\overline{z}) + zg(\overline{z}); \quad f, g \in \overline{A}$$

also have the above property.

Let us find those functions w = u + iv whose deviation from being c-analytic is a c-analytic function, i. e. such functions for which

(6)
$$\overline{C}^{2} w = 0.$$
Let $\overline{C}w = U(x, y) + iV(x, y)$
Then $\overline{C}^{2} w = 0$ implies
$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} = 0; \qquad \frac{\partial V}{\partial y} - \frac{\partial U}{\partial y} = 0,$$

and, as a consequence,

$$\Delta U=0; \quad \Delta V=0$$

Since $U = \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y}$; $V = \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}$, we have

$$\frac{\partial}{\partial x} (\Delta U) + \frac{\partial}{\partial y} (\Delta V) = \frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial^4 u}{\partial y^4},$$

and according to (7), we get

$$\Delta^2 u = 0$$

Similarly, $\Delta^2 v = 0$; which proves one part of the above statement. Condition (6) separates into the following system

(9)
$$\frac{\partial^{2} u}{\partial x^{2}} + 2 \frac{\partial^{2} u}{\partial x \partial y} - \frac{\partial^{2} u}{\partial y^{2}} - \frac{\partial^{2} v}{\partial x^{2}} + 2 \frac{\partial^{2} v}{\partial x \partial y} + \frac{\partial^{2} v}{\partial y^{2}} = 0$$
$$\frac{\partial^{2} u}{\partial x^{2}} - 2 \frac{\partial^{2} u}{\partial x \partial y} - \frac{\partial^{2} u}{\partial y^{2}} + \frac{\partial^{2} v}{\partial x^{2}} + 2 \frac{\partial^{2} v}{\partial x \partial y} - \frac{\partial^{2} v}{\partial y^{2}} = 0.$$

Adding and subtracting the above equations, we get

(10)
$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} = -2 \frac{\partial^2 v}{\partial x \partial y}$$
$$\frac{\partial^2 v}{\partial y^2} - \frac{\partial^2 v}{\partial x^2} = -2 \frac{\partial^2 u}{\partial x \partial y}$$

Systems (9) and (10) are equivalent.

Start from the equation (8), which in a developed form becomes

$$\frac{\partial^4 u}{\partial x^4} + 2 \frac{\partial^4 u}{\partial x^2 \partial y^2} + \frac{\partial u^4}{\partial^4 y} = 0.$$

The general solution of this equation is [6]

(11)
$$u(x, y) = f(x+iy) + yg(x+iy) + \varphi(x-iy) + y \psi(x-iy)$$

where f, g, φ , ψ are arbitrary functions.

From the first equation (10), and (11), we get

$$\frac{\partial^2 v}{\partial x \partial y} = -f''(x+iy) + ig'(x+iy) - yg''(x+iy) - \varphi''(x-iy) - -i\psi'(x-iy) - y\psi''(x-iy)$$

and after integration with respect to x

$$\frac{\partial v}{\partial y} = -f'(x+iy) + ig(x+iy) - yg'(x+iy) - \varphi'(x-iy)$$
$$-i\psi(x-iy) - y\psi'(x-iy) + F(y)$$

where F is an arbitrary function.

After integration with respect to y we get

(12)
$$v(x, y) = if(x + iy) + iyg(x + iy) - i\varphi(x - iy) - iy\psi(x - iy) + \Psi(y) + \Phi(x)$$

where Φ is an arbitrary function, and $\Psi(y) = \int F(y) dy$.

In order to determine the functions $\Psi(y)$, $\Phi(x)$ we shall use, besides equation (12), the equation (11) and the second equation of the system (10) which becomes

$$\Psi^{\prime\prime}(y)-\Phi^{\prime\prime}(x)=0.$$

This implies

$$\Phi(x) = ax^2 + bx + c$$
, $\Psi(y) = ay^2 + dy + e$

where a, b, c, d, e are constants.

Therefore

$$\Phi(x) + \Psi(y) = ax^2 + bx + c + ay^2 + dy + e$$

i. e.
$$\Phi(x) + \Psi(y) = \left(\frac{b\overline{z}}{2} + \frac{i}{2}\overline{dz} + c + e\right) + z\left(a\overline{z} + \frac{b}{2} - \frac{id}{2}\right) = \alpha(\overline{z}) + z\beta(\overline{z})$$

The function w therefore becomes

$$w = u + iv = 2 \varphi (x - iy) + 2 y \psi (x - iy) + i \alpha (\overline{z}) + iz \beta (\overline{z})$$
$$= 2 \varphi (\overline{z}) - iz \psi (\overline{z}) + i\overline{z} \psi (\overline{z}) + i \alpha (\overline{z}) + iz \beta (\overline{z}) = F(\overline{z}) + zG(\overline{z})$$

where
$$F(\overline{z}) = 2 \varphi(\overline{z}) + i\overline{z} \psi(\overline{z}) + i\alpha(\overline{z})$$
 $G(\overline{z}) = -i\psi(\overline{z}) + i\beta(\overline{z})$.

Therefore, functions of the form $w = F(\overline{z}) + zG(\overline{z})$ have the property that $\overline{C^2}w = 0$, which proves the second part of the above statement.

2. Continuing this procedure it can be shown, similarly as in [7], that the functions of the form $\alpha(z) + z\beta(z) + z^2\gamma(z)$ have the property that their second deviation from being c-analytic is a c-analytic function as well as that their real and imaginary parts u(x, y) and v(x, y) satisfy

$$\Delta^3 u = 0, \quad \Delta^3 v = 0.$$

When examining function whose n-th deviation from being c-analytic is a c-analytic function and, in connection with that, functions whose real and imaginary parts satisfy

$$\Delta^n u = 0, \quad \Delta^n v = 0,$$

it is more convenient, following the method of S. Fempl, [8], to use the operator which is inverse to \overline{C} .

We shall, however, use mixed partial derivatives with respect to z, \overline{z} and we shall obtain a more general result which contains Fempl's result on areolare polynomials and, also its analogue on c-areolare polynomials.

Lemma. Let $w(z, \overline{z}) = u(x, y) + iv(x, y)$ be a complex function whose partial derivatives with respect to z, \overline{z} are continuous.

Then

(13)
$$\frac{\partial^{2n} w}{\partial z^n \partial \overline{z^n}} = \frac{1}{2^{2n}} \left(\Delta^n u + i \Delta^n v \right)$$

Proof. Let n=1. Then

$$\frac{\partial^2 w}{\partial z \partial \overline{z}} = \frac{1}{4} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \left(\frac{\partial w}{\partial x} - i \frac{\partial w}{\partial y} \right) = \frac{1}{4} \left(\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right) = \frac{1}{4} \left(\Delta u + i \Delta v \right).$$

Suppose that (13) holds for some n. Then

$$\frac{\partial^{2n+2} w}{\partial z^{n+1} \partial \overline{z}^{n+1}} = \frac{1}{4} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right) \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right) \frac{1}{2^{2n}} \left(\Delta^n u + i \Delta^n v \right)$$

$$= \frac{1}{2^{2n+2}} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) \left(\Delta^n u + i \Delta^n v \right)$$

$$= \frac{1}{2^{2n+2}} \Delta \left(\Delta^n u + i \Delta^n v \right) = \frac{1}{2^{2n+2}} \Delta^{n+1} u + i \Delta^{n+1} v \right),$$

and by induction, the proof is complete.

Corollary

$$\frac{\partial^{2n} w}{\partial z^{n} \partial \overline{z^{n}}} = 0 \text{ if and only if } \Delta^{n} u = 0 \text{ and } \Delta^{n} v = 0.$$

Theorem 7. Complex functions of the form

(1)
$$\sum_{\nu=0}^{n-1} \left[\alpha_{\nu}(z) \overline{z^{\nu}} + \beta_{\nu}(\overline{z}) z^{\nu} \right]$$

where $\alpha_i(z) \in A$, $\beta_i(z) \in \overline{A}$ (i = 0, 1, ..., n-1), and only those functions, have the property that their real ant imaginary part satisfy the equations

$$\Delta^n u = 0$$
: $\Delta^n v = 0$.

Proof. The conditions $\Delta^n u = 0$ and $\Delta^n v = 0$ are equivalent to

$$\frac{\partial^{2n} w}{\partial z^n \partial \overline{z}^n} = 0.$$

The general solution of the above equation is (14).

Special cases:

- 1. Putting $\beta_{\nu}(z) = 0$, $\nu = 0, 1, \dots, n-1$, we get the areolare polynomial. This result has been proved by S. Fempl [8]. Differentiating n-1 times with respect to \overline{z} we see that the areolare polynomial is a non-analytic function whose (n-1)-th deviation from being analytic function is an analytic function.
- 2. Putting $\alpha_{\nu}(z) = 0$, $\nu = 0, 1, ..., n-1$, we get the c-areolare polynomial. Differentiating n-1 times with respect to z we see that its (n-1)—th deviation from being c-analytic is a c-analytic function.

REFERENCES

- [1] А. Билимовић, Диференцијални елеменйи јеомейријске шеорије неаналийичких функција, Glas Srpske Akad. Nauka. Od. Prirod.-Mat. Nauka., CCX, (1960), 1—82.
 - [2] Б. Риман, Сочинения, Москва, 1948.
- [3] Lars Hörmander, An Introduction to Complex Analysis in Several Variables Princeton, New Jersey, 1966.
 - [4] В. И. Смирнов, Курс высшей математики, Т III, Москва, 1956.
- [5] С. Фемпл, О неаналийичким функцијама чије је одсійуйање од аналийичносиш аналийичка функција, Glas Srpske Akad. Nauka. Od. Prirod.-Mat. Nauka., CCLIV, 24 (1963), 75-80.
 - [6] A. R. Forsyth, Lehrbuch des Differential-Gleichungen, Braunschweig, 1912.
- [7] С. Фемпл, О неаналийичким функцијама чије је друго одсшуйање од аналишичносши аналишичка функција, Bull. Soc. Math. Phys. Serbie, XV (1963), 57-62.
- [8] S. Fempl, Aleolarni polinomi kao klasa neanalitičkih funkcija čiji su realni i imaginarni delovi poliharmonijske funkcije, Mat. vesnik 1 (16), 1964.