AN EXAMPLE CONCERNING THE CATEGORY NUMBERS

M. Marjanović

(Communicated October 4, 1968)

Let S be a topological space, I(S) the set of all isolated points of S, and $D(S) = S \setminus I(S)$. A set $X \subset S$ is called nowhere dense in S if $\overline{C(X)} = S$, where $CX = S \setminus X$. D. Kurepa, in [1], has considered the concept of a category number of a topological space. Namely, the minimal cardinal number n such that there are n nowhere dense sets, the union of which coincides with D(S) is called the category number of S, and is denoted by $\operatorname{ct}(S)$.

In [1], the following problem has been given: n is any cardinal number satisfying $\aleph_0 \le n < \operatorname{ct}(S)$, is there a subspace S' of S satisfying $\operatorname{ct}(S') = n$? The example which follows, answers the problem in negative.

- 1. The space S_1 . Let S_1 be any set of cardinality \aleph_3 , i.e. card $(S_1) = \aleph_3$. Topologize S_1 in the following manner: $A \subset S_1$ is open iff $A = \Phi$ or card $(S_1 \setminus A) \leq \aleph_2$. Then,
 - (i) Φ and S_1 are open;
 - (ii) If A_1 and A_2 are open then $A_1 \cap A_2$ is open, for either $A_1 \cap A_2 = \Phi$ or

$$\operatorname{card} (S_1 \setminus A_1 \cap A_2) = \operatorname{card} (S_1 \setminus A_1) \cup (S_1 \setminus A_2)$$

$$\leq \operatorname{card} (S_1 \setminus A_1) + \operatorname{card} (S_1 \setminus A_2) \leq \aleph_2 + \aleph_2 = \aleph_2;$$

(iii) A union of open sets is obviously open.

Let us prove that $\operatorname{ct}(S_1) = \aleph_3$. First $D(S_1) = S_1$, for S_1 has no isolated point. Further, if $B \subset S_1$ is such that $\operatorname{card}(B) = \aleph_3$ then B can not be nowhere dense in S, for

$$\overline{B} = S_1$$
, $C\overline{B} = \Phi$ and $\overline{CB} = \Phi \neq S_1$.

Therefore, if B is nowhere dense in S_1 , then card $(B) \leq \aleph_2$. Now, S_1 is not a union of $\leq \aleph_2$ nowhere dense sets B_{ξ} in S_1 , because we would have

card
$$(S_1)$$
 = card $U\{B_{\xi}: \xi \in Z\} \leqslant \aleph_2 \cdot Z \leqslant \aleph_2 \cdot \aleph_2 = \aleph_2$.

So, ct $(S_1) = \aleph_3$.

Next, we prove that for each subspace S_1' of S_1 , $\operatorname{ct}(S_1') = \aleph_3$ or 0. Let card $(S_1') = \aleph_3$. Then S_1' is homeomorphic to S_1 and so $\operatorname{ct}(S_1') = \aleph_3$. If card $(S_1') \leqslant \aleph_2$, for each $x \in S_1'$, the set $(S_1 \setminus S_1') \cup \{x\}$ is open in S_1 and the set $S_1' \cap [(S_1 \setminus S_1') \cup \{x\}] = \{x\}$ is open in S_1' , what means that S_1' is discrete and so $\operatorname{ct}(S_1') = 0$ $(D(S_1') = \Phi)$ and $\operatorname{ct}(\Phi) = 0$.

- 2. The space S_2 . Let S_2 be Euclidian line.
- 3. The space S. Let S be the topological sum of the spaces S_1 and S_2 . Let $S' = S_1' \cup S_2'$ be a subspace of S, $S_1' \subset S_1$ and $S_2' \subset S_2$. When card $(S_1') = \aleph_3$, then ct $(S') = \aleph_3$. When card $(S_1') \leq \aleph_2$, then ct $(S') = \operatorname{ct}(S_2') \leq \aleph_1$ (excepting that $2^{\aleph_0} = \aleph_1$). Therefore, there in no subspace S' of the space S such that ct $(S') = \aleph_2$.

REFERENCES

[1] D. Kurepa, On the category numbers of topological spaces, Publ. Inst. Math., t. 8 (22), 1968, pp. 149—152.

Institut Mathématique Beograd