ON THE TOPOLOGICAL COMPLEMENTATION PROBLEM

R. Dacić

(Communicated March 17, 1967)

1. Definition. Let X be a fixed point set and let \mathcal{G} be a topology on X. A topology \mathcal{G}' on X is said to be a complement for \mathcal{G} if and only if the sup topology of \mathcal{G} and \mathcal{G}' is the discrete topology and the inf topology is then trivial topology.

This definition is given in [1] and the problem of complementation is treated. This problem is now solved (see [3]). In [1] the following question is raised:

In the lattice of topologies on an infinite point set X, does every topology, which is neither discrete nor trivial, have at least two complements?

Hartmanis (see references of [1]) has stated that if X is a finite set with three or more elements then any topology of X, which is neither discrete nor trivial, has more than one complement.

M. P. Berri has constructed a topology on an infinite set X which has more than one complement. That topology is

$$\mathcal{G} = \{A \subset X \mid X \setminus A \text{ is finite}\} \cup \{\Phi\}.$$

In this note we give some other examples of non-uniquely complemented topologies.

A topology $\mathcal G$ on X is an *ultraspace* if the only topology on X strictly finer than $\mathcal G$ is the discrete topology.

A topology \mathcal{G} on X is an *infraspace* if the only topology on X strictly coarser than \mathcal{G} is trivial topology.

For $p \in X$ and a filter \mathcal{F} on X, Frönlich [2] defined $\Sigma(p, \mathcal{F})$ to be the family of sets $P(X - \{p\}) \cup \mathcal{F}$, where $P(X - \{p\})$ is the collection of all subsets of X which do not contain p. $\Sigma(p, \mathcal{F})$ is a topology on X, and all the sets $\{x\}$ $(x \neq p)$ are open. Frönlich proved that ultraspaces on X are exactly the topologies of the form $\Sigma(x, \mathcal{U})$ where $x \in X$ and \mathcal{U} is an ultrafilter on X, $\mathcal{U} \neq \mathcal{U}(x)$. We shall now construct complements for ultraspaces.

Theorem 1. Every ultraspace topology on X has more than one complement.

Proof. For an ultraspace $\Sigma(x, \mathcal{U})$ the complement is an infraspace (x, X, Φ) what is evident. We shall now define another topology on X. Let $p \in X$, and A be a subset of X, $A \in \mathcal{U}$. Form a topology on X such that $\{p\}$

be a dense subset of this topology. If $\{B_m\}$ $(m \in M - \text{an index set})$ is a partition of a A, then the base for that topology is consisting of the sets $B_m \cup \{p\}$, X, and $\{p\}$. Call that topology p— topology, and denote it by $\mathcal{G}_p(A)$. There is no set in $\Sigma(p, \mathcal{U})$ which is a member of $\mathcal{G}_p(A)$ except X and \varnothing . So inf $(\Sigma(p, \mathcal{U}), \mathcal{G}_p(A))$ is trivial topology. Since $\{p\}$ is open in $\mathcal{G}_p(A)$ all the sets of the form $\{x\}$, $x \in X$, are open in sup $(\Sigma(p, \mathcal{U}), \mathcal{G}_p(A))$ and so sup is discrete. Choosing different subsets A of X we obtain different complements of $\Sigma(p, \mathcal{U})$. The theorem is proved.

Remark. The theorem 1. is valid if ultraspace is replaced by $\Sigma(p, \mathcal{F})$ where \mathcal{F} is not ultrafilter.

Theorem 2. Every infraspace is non-uniquely complemented.

Proof. Let $\mathcal{G}' = \{X, A \subset X, \Phi\}$ be an infraspace (every infraspace is of that form). Define a topology \mathcal{G} on X in the following way:

$$\mathcal{G} = P(X - A) \cup \mathcal{G}_p(A) \qquad (p \in A)$$

with $B_m = \{m\}$, $m \in A$. It is easily seen that \mathcal{G} is really a topology, in which A is not open.

Therefore inf $(\mathcal{G}', \mathcal{G})$ is a trivial topology. For $x \in X - A$ we have $\{x\} \in \mathcal{G}$ and consequently $\{x\} \in \sup (\mathcal{G}', \mathcal{G})$. For $x \in A$ we have $\{x\} = \{x, p\} \cap A$ so that $\{x\} \in \sup (\mathcal{G}', \mathcal{G})$ for all $x \in X$. One complement of \mathcal{G}' is constructed. To obtain other it is enough to take a point $q \in X - A$, $q \neq p$, and form a topology in the above manner. The theorem is proved.

Remark. In these theorems X is supposed to be infinite set. The non-uniqueness of the complements of topologies on a finite set is known (see [1]).

Theorem 3. If a topological space X is a direct sum of an ultraspace X' and an arbitrary topological space X'' then X has non-unique complement.

Proof. We have proved that the space X' has non-unique complement. According to [3], theorem 7, the topology \mathcal{G}/X'' (\mathcal{G} is considered topology of X and \mathcal{G}/X'' , the topology of subspace X'') has complement. Denote it by \mathcal{G}'/X'' . Consider two different complements \mathcal{G}_1 and \mathcal{G}_1'' of the topology \mathcal{G}_1 of the space $\Sigma(p,\mathcal{U})$. Then the direct sum topologies $\mathcal{G}_1+\mathcal{G}'/X''$ are different topologies on X which are complements of \mathcal{G} . The theorem is proved.

Theorem 4. If the space (X, \mathcal{G}) is direct sum of an interspace $(X', A \subset X, \Phi)$ and a topological space $(X'', \mathcal{G}/X'')$ then \mathcal{G} is non-uniquely complemented.

In the proof we use the theorem 2. and the same procedure as in the theorem 3.

Theorem 5. Let topology \mathcal{G} of X is consisted of the disjoint sets $A_i(A_i + X)$ and $X \setminus \bigcup_i A_i$ is consisted of more than one point, then \mathcal{G} is non-uniquely complemented.

Proof. Denote by $S = \bigcup_i A_i$ and consider $\mathcal{G}_p(S)$, for $m \in S$ and $p \in X \setminus S$. Then $X \setminus S$ has discrete topology. We shall show that topology \mathcal{G}' which base is $\mathcal{G}_p(S) \cup P(X \setminus S)$ is complement of \mathcal{G} . We shall first show that $\sup(\mathcal{G}, \mathcal{G}') = \text{discrete}$ topology. Let $x \in X \setminus S$ then $\{x\} \in \mathcal{G}'$ and $\{x\} = \{x\} \cap X(X \in \mathcal{G})$

10 R. Dacić

and consequently $\{x\}$ is open in sup $(\mathcal{G}, \mathcal{G}')$. For $x \in S$ we have $0 \in \mathcal{G}'$, which has $\{p\}$ as dense subset and $0 \cap A_i = \{x\}$ for some A_i . So sup $(\mathcal{G}, \mathcal{G}')$ is discrete topology. Show next that inf $(\mathcal{G}, \mathcal{G}') = \text{trivial}$ topology. Let $0 \in \text{inf}$ $(\mathcal{G}, \mathcal{G}')$. Then 0 is not of the form $\bigcup A_i$ for any $J' \subset J$ that is $0 \supset S$ since $\bigcup A_i$ as element of \mathcal{G} has not $\{p\}$ as a dense subset. On the other hand, if $0 \cap S \cap (X \setminus S) \neq \emptyset$ it follows that $X \setminus S \subset 0$ and so 0 = X.

2. Theorem 6. Every T_1 -topology, which has no isolated points is non-uniquely complemented.

Proof. This theorem needs the following lemma.

Lemma 1. If $\sup (\mathcal{I}, \mathcal{I}') = P(X) = \text{discrete topology}$, then $\sup (\mathcal{I}, \mathcal{I}'') = P(X)$ for all $\mathcal{I}'' \supset \mathcal{I}'$.

The proof of this lemma is obvious.

Proof of theorem.

Let \mathcal{G} be any given T_1 -topology on X which has no isolated points, and \mathcal{G}' its complement which exists according to the theorem 7.7 of [3]. Let $x \in X$, $\{x\} \in \mathcal{G}'$. Put $\mathcal{G}'' = T' \cup \{x\}$. We obtain a topology \mathcal{G}'' in which x is isolated. We shall prove that \mathcal{G}'' is also a complement of \mathcal{G} . According to the lemma, it is enough to prove that $\inf (\mathcal{G}, \mathcal{G}'') = \{ \emptyset, X \}$. Since \mathcal{G} has no isolated point the set $\{x\}$ is not open in \mathcal{G} . Suppose $G \in \mathcal{G} \cap \mathcal{G}''$. If $x \in G$, then $G = \emptyset$ according to the facts that open sets in $X \setminus \{x\}$ are the same, both in \mathcal{G}' and \mathcal{G}'' , and that \mathcal{G}' is the complement of \mathcal{G} . Consequently the common open sets in \mathcal{G} and \mathcal{G}'' must contain x. Make two representations for $G: G = \{x\} \cup 0$ $(0 \in \mathcal{G}')$ and $G = \{x\} \cup 0' \ (0' \in \mathcal{G})$. If $G \neq X$, we shall prove that the latter representation is impossible even if $x \in 0'$, and thus the desired proof will be completed. First of all it is impossible $x \in 0 \cap 0'$, for otherwise 0 = 0', which is contrary to the hypothesis that inf $(\mathcal{G}, \mathcal{G}') = \{\emptyset, X\}$. The same is obtained by supposition $x \in 0 \cap 0'$. The supposition $x \in 0$ and $x \in 0'$ leads to the conclusion that x is an isolated point in \mathcal{G} which is contrary to the hypothesis of the theorem. The only possibility is then $x \equiv 0$ and $x \in 0'$. Then $0 = 0' \setminus \{x\}$. Since \mathcal{G} is T_1 -topology (and $\{x\}$ is not open) we have $0' \setminus \{x\}$ (=0) is open in \mathcal{G} and inf $(\mathcal{G}, \mathcal{G}')$ is not trivial, contrary to the hypothesis that \mathcal{G}' is the complement of \mathcal{G} . Consequently there is no $G \neq X$ open in \mathcal{G}'' and \mathcal{G} . Hence \mathcal{G}'' is complement of \mathcal{G} . Since $\mathcal{G}'' \neq \mathcal{G}'$, the theorem is proved.

On the S-property.

Let (X,\mathcal{G}) be a topological space which has isolated points. Denote this set of isolated points by I_1 . Let us consider the subspace $\mathcal{G}|(X-I_1)$ and denote by I_2 the set of its isolated points.

Suppose that α is an ordinal number and that the set I_{α} has been defined for all $\alpha < \beta$. We define I_{β} to be the set of isolated points of $\mathcal{G} \mid (X - \bigcup_{\alpha < \beta} I_{\alpha})$.

If $|X| < |\gamma|$, |X| means the cardinality of X, the family of disjoint sets $\{I_{\alpha} \mid \alpha < \gamma\}$ is inductively defined.

Suppose that there exists some α_0 such that $I_{\alpha_0+1}=\emptyset$ and $I_{\alpha_0}\neq\emptyset$. Suppose further that $X-\bigcup I_\alpha\neq\emptyset$, and that $\mathcal{G}|(X-\bigcup I_\alpha)$ is T_1 —topology. If a space X has this property we say that X has the property (S).

Theorem 7. If a topological space (X, \mathcal{I}) has the property (S), the topology \mathcal{I} is non-uniquely complemented.

Proof. First of all we shall point out that for $p \in X_1 = X - \bigcup_{\alpha \leqslant \alpha_0} I_{\alpha}$, there is no open set G of G such that $\{p\} = X_1 \cap G$. Really if such a set G exists the point p should be an isolated point of X_1 contrary to the definition of X_1 .

Since $\mathcal{G}_1 = \mathcal{G} \mid X_1$ is a T_1 —topology which has no isolated point, it has (see [3], theorem 7.7) a complement \mathcal{G}_1' . Take a point $p \in X_1$ and denote by A the set $\bigcup I_{\alpha}$. On the set $\{p\} \bigcup A$ define a topology of the form $\mathcal{G}_p(A)$ with $B_{\alpha} = I_{\alpha}$ and a property that if an open set of $\mathcal{G}_p(A)$ contains I_{α} , it must contain I_{β} for $\beta > \alpha$ (see the proof of the theorem 1.). The topology \mathcal{G}' on X produced by the sets $\mathcal{G}_1' \cup \mathcal{G}_p(A)$ is a complement of the topology \mathcal{G} .

Since no one of open sets of the form $\{p\} \cup 0$ with $0 \subset \bigcup I_{\alpha}$ belongs to \mathcal{G} (or otherwise $\{p\}$ should be isolated point of X_1 , which is contrary to the hypothesis that X_1 has no isolated points) no one of open sets of $\mathcal{G}_p(A)$ belongs to \mathcal{G} . Consider an open set O of $\mathcal{G}' \cap \mathcal{G}$. Since $O \in \mathcal{G}'$ it, can ce represented in the form $O_1 \cup O_2$, $O_1 \in \mathcal{G}_1'$ and $O_2 \in \mathcal{G}_p(A)$. According to the proof of theorem $O_1 \cup O_2$, $O_1 \in \mathcal{G}_1'$ and $O_2 \in \mathcal{G}_p(A)$. According to the proof of theorem $O_1 \cup O_2$, $O_1 \in \mathcal{G}_1'$ and $O_2 \in \mathcal{G}_p(A)$. Since for all $O_1 \cup O_2 \in \mathcal{G}_p(A)$ is an element of $O_1 \cup O_2 \in \mathcal{G}_p(A)$. We have that $O_1 \cup O_2 \in \mathcal{G}_p(A)$ be the least element of $O_2 \cap O_2 \in \mathcal{G}_p(A)$. We have that the set $O_2 \cup O_2 \cap O_2 \in \mathcal{G}_p(A)$ is an element of $O_2 \cap O_2 \cap O_2 \in \mathcal{G}_p(A)$. So $O_1 \cup O_2 \cap O_$

Prove next that sup $(\mathcal{I}, \mathcal{I}')$ is discrete topology. If $x \in X_1$ this assertion follows from the fact that $\mathcal{I}'|X_1$ is finer than \mathcal{I}_1' , and \mathcal{I}_1' is a complement of $\mathcal{I}|X_1$. Take, therefore, $x \in X - X_1$. Let $x \in I_{\alpha_0}$; then there exists $O \in \mathcal{I}$, $O \subset \bigcup I_{\alpha}$ and $O \cap I_{\alpha} = \{x\}$. But the set $\{p\} \bigcup I_{\beta}$ is open in \mathcal{I}' and consequently $\{x\} \in \sup(\mathcal{I}, \mathcal{I}')$, that is $\sup(\mathcal{I}, \mathcal{I}')$ is a discrete topology, what was to be proved.

To prove the theorem, take another point $p_1 \in X_1$, $p_1 \neq p$. The existence of an infinite number of such points p is guaranteed by the following reason. If X_1 has a finite number of points p_1, \ldots, p_n and since \mathcal{G}_1 is T_1 —topology, the space (X_1, \mathcal{G}_1) must be discrete and, then all p_i $(i = 1, \ldots, n)$ are isolated points, contrary to the hypothesis of the theorem.

Theorem 8. If $X = \bigcup_{\alpha \leqslant \alpha_0} I_{\alpha}$, then \mathcal{G} is non-uniquely complemented.

Proof. \mathcal{G}' is defined in the following way: all $O \in \mathcal{G}$ contain I_{α_0} ; if $x \in I_{\alpha}$, $x \in O$, then $I_{\alpha} \subset O$, and if O contains I_{α} , then all I_{β} , for $\beta < \alpha$, are contained in O. It is easily seen that \mathcal{G}' defined in this way, is really a topology on X. By the arguments used in the proof of the theorem \mathcal{T} , we are convinced that \mathcal{T}' is really a complement of \mathcal{T} . To obtain another complement \mathcal{T}'' take a point $p \in I_{\alpha_0}$ and make that point isolated in \mathcal{T}' . First of all we must prove that $I_{\alpha_0} \neq \{p\}$. If $\{p\} = I_{\alpha_0}$ then p is an isolated point of I_{α_0-1} contrary to the hypothesis that α_0 is the least ordinal number α for which $I_{\alpha_0} \neq \emptyset$. So I_{α_0} is consisted of at least two points. We shall next prove that \mathcal{T}'' is really a complement of \mathcal{T} . According to the lemma it is enough to prove that inf $(\mathcal{T}, \mathcal{T}'') = (X, \emptyset)$. To obtain that, we must prove that I_{α_0} is not open in \mathcal{T} . Suppose contrary. As in the proof of theorem \mathcal{T} , we have that \mathcal{T}' is open in \mathcal{T} .

12 R. Dacić

Since $x \in I_{\alpha_0}$ is an isolated point of $\mathcal{G} \mid (X - \bigcup I_{\alpha})$ there exists an open set O in \mathcal{G} such that $\{x\} = O \cap I_{\alpha}$ and being intersection of two open sets in \mathcal{G} , $\{x\}$ is open in \mathcal{G} , which leads to the conclusion that \mathcal{G} is a discrete topology which is contrary to the hypothesis that all considered topologies are neither discrete nor trivial. So I_{α_0} , as well as $\bigcup I_{\alpha}$, is not open in \mathcal{G} .

Suppose now that there exists a set O open in both topologies \mathcal{G} and \mathcal{G}'' . Evidently $O = \{p\}$. If $p \in O$ then no one point of I_{α_0} is in O (according to the definition of \mathcal{G}' and consequently \mathcal{G}'') and $O = \varnothing$. So $p \in O$. We have already proved that $I_{\alpha_0} \in \mathcal{G}$, even more $\bigcup I_{\alpha} \in \mathcal{G}$. So O as element of \mathcal{G} must contain a point $x \in I_{\alpha}$, $\alpha < \alpha_0$. But as an element of \mathcal{G}'' the set O must contain the whole I_{α} and so O = X. Consequently inf $(\mathcal{G}, \mathcal{G}'') = (X, \varnothing)$.

Taking into account theorems 6, 7 and 8 we have the following

Theorem 9. Every T_1 -topology on any infinite set is non-uniquely complemented.

REFERENCES

- [1] M. P. Berri, The complement of a topology for some topological groups, Fundamenta Mathematicae LVIII (1966), 159--162.
- [2] O. Frönlich, Das Halbordnungssystem der topologischen Räume auf einer Menge, Math. Ann. 156 (1964), 79—95.
- [3] A.K. Steiner, The lattice of topologies: Structure and complementation, Tran. Am. Math. Soc. 122 (1966), p 379—398.

Institut Mathématique Beograd