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Abstract. This paper deals with a transformation of the thermal boun-
dary-layer equation into a universal form in the sense of the paper [1]. The question
of solving such an equation is treated only principally, as it is easy to obtain
it by the procedure given in the paper [3].

Introduction. In the paper [1] we mentioned some weaknesses of the meth-
od [2] in comparison to [1]. Here, we mention that the same weaknesses hold
for the method [3], as both belong to the same class of solutions. Therefore,
our task is to improve the method {3] in the same way in which the method
[1] improves the method [2]. As in the paper [1] we considered that question
in details, here, we consider only the transformation of the basic equation,
and then point out to the way for solving obtained universal equation. For
this purpose we first give a brief review of the paper [1].,Namely, in that
paper we have assumed that the stream function ¢ has the form

&) b(x, y, =AU (x, 1) 5 (1) F (),

where § (1 )= (w: 4,, ..., d,) together with its derivatives are real continu-
ous functions defined on the product space E! xW, where W is an arbitrary
fixed set in Buclidean m-space E7”, and d is an essentially bounded function
from Elx I, I=[0, o0), to W with continuons first derivatives. Further, we
showed that the function d(x, t) could be factorized as follows :

@ LA D =fE A0 +EO),

where g, h and [ were given to satisfy certain types of ordinary differential
equations [1]. By using (1) and differential equations for given parameters,
the basic equation of the velocity boundary layer is transformed into a uni-
versal form. Furthermore, we gave the solution of that equation and in details
studied, so named ,,simple solutions* which corresponded to one-parameter
approximation of the function §, namely for the case d=d,. Also, it is shown
that the one-parameter approximation, in particular cases, gives the same va-
lues of boundary-layer magnitudes as those which can be found in [4]. As
the temperature field can be obtained only after the velocity field {(u, v} then
we have a stage for solving such a problem.
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The basic problem. We consider, as in [3], the equation of the tempera-
ture distribution for the case of two-dimensional forced-convection flows. This
equation is

1
(3) £+u£ ..‘?.Z.,,,__._(‘)U+ )(U... )+}.- ?_—T.;“m\fw(au>
ot ox oy gCy\ ot ax c 0y2 gCp\oy
with boundary conditions

T=Tyx,1) or 2L 0,0,
oy

(4} T’"’Tms Y=o,

where T is a real valued function of the class C¥ (k=0,1,...)in E2x I. Now,
we assume that the function T, has the same form as in [3], namely

&) T, )—To = S(x) 8 (1),

with § and 6 real valued functions in E! and I respectively, and of the class
C*. In order to achieve the purpose mentioned in the introduction, we consider
two sets 4 and B in Euclidean n-space. Respective elements of these sets,
a,&A and b, & B, are assumed as follows

V" d"S
= — ¥k b
©) ¥ ark ETS dn

1 .. . . . .
where z*=— §,>and §, is the displacement thickness. It is easy to verify that
v

mentioned elements satisfy the following ordinary differential equations
9 ,
) “’e“,‘axak =(—a,+2kF)a; +ap.,, Vb = (—by + kf) be + by«
Next we assume that the equation (3) may be taken in the form
T(x,p,t)=

1 V2 Q)
== L oy s J s :h s —— 312 8 1 05 5
®) +S(X)9(t){%(n fahabos = T %(nfgkba)]

where F6(n; f, ... ) =6 (; f},. . Jes.--) is a continuous function which repre-
sents the solutlen of a heatx!ig rcspectweiy cooling problem, and & (n; f,...)
=KLy Sos...) Is alsb a continuous funciion which represents the solu-
tion of the thermometer problem.Taking into account (8) and expressions (6)
and (7), the differential equation (3) is separated in two partial equation of
universal forms, in the sense of [I}],

) P(%)a;g hy { ?; [0 (F65, s+ T, Be)—Ton By, ] + b, T To—1; § T, }
respectively

P z;i;kl {(b: +2£) B Kty FKn + é [0 (K, o+ Fo, Bl —Fon Bige ] }

(10) --—B~2~c1»-%n><g,+ﬂhz)+$%n],
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with boundary conditions
% = I, %n = 0: n= 09
(i ImP6=lim X =0.

T—re0 Tron
These equations are, so named, universal equations, in the sense that neither
equations nor boundary conditions depend on the particular problem data. What
are preferences of these equations in comparison to those in [3] can be conclu-
ded from [1]. In obtained equations two operators P and P appear. Forms of
these operators are;
1 F a 1 2
(12) PS?D”2+E ?}D,}*—*:‘;wzkgl (i th + 2% ng + dp D“k )
where D,,,=—9~, and the operator P has the same form, only instead of g, in
"

. n —
P ought to stand 2g;, and the term —-1~:—2 > ax Dg, does not exist in P.
k=1

Thus, the basic goal of this paper is achieved. Now, we shall point out
how to solve obtained partial equations. They are very simple to be solved if
we follow procedures given in [3] and [1]. So it is obvious from [3] that sui-
table forms of the functions S%6(v; £, g, 4, a, b; 6) and K (v; f, g, h, b; o) are:

%m%ﬂ+ﬂ%i+bx%xa+ Tty
(13) K=K +fiKi+b, Ko+ - - -
In that manner partial equations (9) and (10) would be reduced to systems of
partial equations. Next, we could introduce linear combinations by which one
could make decompositions of given functions g, . .. and K, .... These linear
combinations could be carried out in a simple way, as in [3] and [1]. By intro~
ducing such linear combinations, systems of partial equations would be reduced
to systems of ordinary differential equations. The general solution of such a
type of equations is given in [3]. We omit details about these questions,

Simple solutions. In the paper [1] is pointed out that simple solutions are
those with one-parameter approximations and assumed linearities. Here, we shall
slightly discuss these solutions. For them, functions &% and % given by (13) are
reduced to the forms

(14 D6 =60+, 96, +b, Fb1sy K=Ko+fi Ki+b Kya-

Subsitituting these forms of functions % and %K into (9) and (10) we obtain
systems of partial equations

P(%o) =0, P (%l) = "‘hl A2 i“yo %ow P (%m) = h, A2 %On %0’
P(FKo) = =81 A2 (1—Fon)—Fom> P (Fy)=hy A2[(2 Foy Ko—Fo FKow) —
(15) — (P =Fod] + & F1n—2F0m Fin> P (Kio) =h; 472§y Ko

Furthermore, by linear combinations we can conclude that functions which
appear in (14) may be decomposed as follows

Po= oo+ 81 601+ b1, F6ys F61=0F611, Fb1a=M For1as
(16) Ko=Kn+8 Ko, Ki=h Ky, FKiu=hXKua
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and accordingly systems of partial equations (15) are to be reduced to systems
of ordinary differential equations for determination of unknown functions
Foos - - - and Ky, . ... These systems we shall not write as it is a simple matter
to obtain them. We point only out that in [3] we considered such a type of equa-
tions and gave its general solution. Moreover, in [1] is shown that simple
solutions give satisfying results for practical considerations. Their very simple
forms do that we can arrive at a final result very quickly.

It remains still to point out that one could carry out all formulas for boun-
dary-layer magnitudes as in [3}. Also, notions of the proper temperature and tem-
perature critetion could be introduced. Details about all these questions we omit
considering them very simple.
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