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ON AN INEQUALITY OF TCHAKALOFF

P. S. Bullen
{Received March 1, 1968)

0. In [4] Tchakaloff showed that Rado’s inequality, [1, (12)], can be streng-
thened if the sequence is assumed to be monotonic. In this note we extend
his result to a multiplicative analogue of Rado’s inequality, [1, (11)], and to
more general means.

1. Let W)={w, ..., w,) denote an n-tple of positive numbers and write
n

W, = Z we. If @ ={a;, ..., a;) is another such n-tple put
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the weighted arithmetic and geometric means of (a) with weight (w). We will
write A, (a; w) for A,., (a; w") where (@) =(a;, ..., @y-) etc.

2. The following theorem was proved in [3]; we give an alternative proof.

Theorem 1.
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with equality only when A, (@ ¢)=a,
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Proof: Let a,(a;, ..., ay)=A,(@ 9)—Gy,(a; p) and
ann_]/ann_
Uy @5 - oo Apy) = Apy—Gpy " Put Jx)y=o,(ay, ..., ay, x), then
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Hence we easily see that f'(x) >0, =0, <0 accordingas x>, —,<<G,_,
That is to say that at this value of x f has an absolute minimum. So

< qﬂPTL* l/pTLQﬂ - 1)
g (@ ooy @) \ay, ooy Gpeys Gpog
O
==l Tn—1 (ala cee an—1)9
On
ann - l/p’ILQTL -1 . .
unless a,=G, , when we get equality. This proves (2.1).

®
A similar proof can be given for (2.2).

3. 1In [4] Tchakaloff showed that particular cases of (2.1) can be improved
by assuming a, >max (@, ..., a,—,). We now consider this.

Theorem 2. If p, q,#pPa q, then inequality (2.1) cannot be improved by
assuming d, >max (@, ..., Gu_y).

Proof: Let a=1—¢, a,= , ...=a,=1. Then with the above notation
»4q [p Q
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Letting ¢—0, the ringht-hand side of (3.1) tends to Qﬂi, which completes
n

the proof of Theorem 2.

If follows from this that to improve (2.1) we need to assume p, g, =p, q;;
and if we want a result for all z this is equivalent to assuming (p), (¢) are
proportional (i.e. for some o, py=o gy, | <k<n), or more simply that (p)=(q).

Theorem 3. If n>2, a,>max(a, ..., ) then
Q2 Q2
(3:2) _Q‘ iq {An (@ 9—G(q; q)}>7"n:1~ql {An—l (@ 9)—Gu (a5 9},
n 1 n—1

with equality only when a,= - - - =a,; further this inequality cannot be improved.
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Proof. The last remark follows from (3.1) with (p)=(q); letting ¢—0
the right-hand side tends to 2n "ﬂﬁgﬁ?&t—?‘)
Qn(Qn-- MQI)

The rest of the proof is similar to Tchakaloff’s proof in [4] so will not
be given in detail. Let

@({zis cees Gy)= Qn(Qfez~; q1) (A —Gp)— Qn 1(@y ;) (4pe1—Gpy)

and put g(x)=B{a,..., @p, %, ..., x). Then
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Putting £ Gn_;””px“@”””, g (x)=0(f), we see that

g ! .
@ ()= 0y Qs t "H(Qr—9) (Qpy— Oup) fqﬂ“(Qn«-x“‘h) {Qn”‘“Qw—p)} .
It is then easily proved that if 0<iz<1 then ¢(£)>0 and the proof proceeds
as in [4].
Q127—~1 () >Qn-1
0 g (@n—a1) On

(3.2) is stronger than (2.1). Further if ¢;=1, 1<k<n, (3.2) reduces to Tcha-
kaloff’s inequality.

Since

4. We now consider the analogous problem for the inequality (2.2). Since,
unlike (2.1), g,= - --=aq, is not a case of equality in (2.2), it not to be
expected that results can be obtained by considering approaches to this case,
as was done above. Our approach is suggested by the simplest case of equality,

a;cwf?-«km; 1<k<n.

qx

Theorem 4. If (p), (g) are not proportional then inequality (2.2) cannot
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Py



72 P. S. Bullen

Proof If 2&i_1g B .. e _ ey
Py P Pa
log }Q)ﬁ A4,—log In G,
lim L On is just P, ./P,, which proves the theorem,
&—>0 Iog Q'n'—-l An..l—-«log gj}_ 1

n—1 Pn
So to improve (2.2) we will assume (p)==(g).

Theorem 5. If n>2, aq,>max{a,, ..., a,.,) then

2
4.1 _9x
( ) Qn”‘q{

2
> 59{3%; {log Ay, (@ §)—10g Gu_y (a5 )},
=

{log 4, (a; 9)—log G, (a; 9)}

with equality only when a,= - - + =a,; further this inequality cannot be improved.

Proof: Putting (p)=(g) in the ratio used in Theorem 4 the limit eva-
2
0n-1(@n—q,)

luated there is now equal to ~5—-=-——%, which demonstrates the last remark.
Let 0n(Qn-1—aq)
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and put A()=vy (¢, ..., Gyp X, ..., X). Then

W (x)=h(x) { On (Cr-1—91) (Cn—Cnyp) (j;m m%)

n

— 011 (a =) (ni—0ump) ! -»i)}.
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If we show x>a,_, implies A (x)>0 then, proceeding as in [4], the proof
of (4.1) will follow. Since clearly £>0 it is sufficient to prove

01 (Qner— ) (@n—Qnesp) (;“‘i)

> 0t (Qn—) (Crms— Q) ( ! —»i) ‘
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Since x>a,., implies both x> 4, and x>4,,, this last inequality is equi-

valent to
0 (Qp—1—9) (Cn— On—p) (x—4y)
> Qpe1 (Qa—141) (Cu—1— COn—p) (X — Ap—y)s
which in turn is equivalent to
(Qn-—-l - 91) (Qrs - Qn“p) > (Qn - QI) (Qn«--z - Qw—g;) *

Simple calculations verify this last inequality, and complete the proof,
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By the remark following Theorem 3, (4.1) is stronger that (2.2). Further
if pp=1, 1<k<n then (4.1) becomes

n? (n—1)2

4.2) <14_£>""' > ({4_3»_:1)"—2 ) ,
Gn G'ﬂ"‘l

a multiplicative analogue of Tchakaloff’s inequality and an improvement on
(L, (1)

5. In [1} the multiplicative analogue of Rado’s inequality was extended to
more general means. The ideas of Tchakaloff can also be extended to these
means; as the proofs are the same but much more tedious we will only state
the results.

If 1<r<n put
E(r)=E(rm=Enma= 2  [la,
) n j=1

S SRS T =
e ‘IT' r

1
—1

P(r)=P(r, n)=P(r, n;a)— (”) E(r).
r

E(r) is the rth elementary symmetric function of (4), and P(r) the rth symmet-
ric mean of (a@). As in 0 we will write E(r, n—1)=E(r, n—1, a) for
E(r, n—1, a') etc.

The following results are known, [1, 2];

(i) if s<<r then P!(s)> Ps(1) with equality only when a,= « - - =a,;

@) if @=(a, ..., Gyy, X, ..., x) then

P(s, n)= i rs, DP(s—t, n—q)xt,

where u=max(s—n+g, 0), v=min(s, ¢g), and

o (22)(2) )
§—1 t]i\s
(iii) if l<r<k<n then

PE(r, n) _ PE(r, n—1)

(5.1 > ,
Prik+1,n)  Pr(k, n—1)

with equality only when a,= - - - =a,. It is (5.1) that we will strengthen; if
r=1, k=n—1, then (5.1) reduces to the multiplicative analogue of Rado’s
Theorem, [1].

Theorem 6. If n>2, a,>max(a,, ..., dy—;) then
(5.2) (k+Dlog P(r, n)—rlogP(k+1, n)
— 132
> et Din—1)2 {klogP(r, n—1)—rlog P(k, n—1)},

(k—1yn2

with equality only when a,= - - - =a,; further this inequality cannot be improved.
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The last remark is proved by putting a,=1—¢, a,= -+ =ag,=1 and eva-
. . — . o k+1)(n—1
luating lim (k+ Dlog £(r, m)-—rlog Pk +1, n); its value is just (k1) (n— —)
0 klog P(r, n—1)—rlog P(k, n—1) (k—1)n2

The rest is proved as in Theorem 5, making use in particular of (ii) above.
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