ON MULTI-VALUED FUNCTIONS

Rade Dacić

(Communicated June 23, 1967)

The aim of this paper is to show that all multi-valued linear functions on vector space to vector space can be reduced to single-valued linear functions.

A multi-valued function is a correspondence which assigns to each point of a set X a subset of a set Y.

We denote multi-valued functions by capital letters Γ , F, etc., and single-valued functions by small letters γ , f, etc.

In [1] is assumed that for some $x \in X$ it can be $\Gamma(x) = \emptyset$.

A function Γ on a space X to a space Y is called *continuous* at x' if and only if for all open set W containing $\Gamma(x')$ there exists an open set V containing x' such that $\Gamma(x) \subset W$ for all $x \in V$. Γ is continuous on X if it is continuous for all $x \in X$.

First of all, we shall examine the structure of multi-valued linear functions defined in [1].

Let X and Y be two vector spaces. A multi-valued function $\Gamma: X \rightarrow Y$ is said to be *linear* provided that:

$$\begin{array}{cc}
1^{\circ} & \text{for } y \in \Gamma(x) \\
 & y' \in \Gamma(x')
\end{array} \} \Rightarrow y + y' \in \Gamma(x + x');$$

2° if $y \in \Gamma(x)$ and α scalar $\Rightarrow \alpha y \in \Gamma(\alpha x)$.

For linear functions is also acceptable $\Gamma(x) = \emptyset$ for some $x \in X$.

A multi-valued linear function Γ we call *trivial* if $\Gamma(x) = \emptyset$ for all $x \in X_{\bullet}$ Γ is *constant function* if $\Gamma(x) = \Gamma(0)$ for all $x \in X$.

Theorem 1. If multi-valued linear function Γ is not trivial, then $\Gamma(0) \neq \emptyset$.

Proof. For some $x \in X$, it is, then, valid $\Gamma(x) \neq \emptyset$. But then, for $y \in \Gamma(x)$ we obtain $0 = 0 \cdot y \in \Gamma(0 \cdot y) = \Gamma(0)$, and $\Gamma(0)$ is non-void.

This justifies the above definition of constant function.

Theorem 2. If Γ is linear and $\Gamma(x) \neq \emptyset$, then $\Gamma(-x) \neq \emptyset$.

Proof. Since $\Gamma(x) \neq \emptyset$ there exists at least one element y in $\Gamma(x)$.

But then, because of linearity $-y = (-1)y \in \Gamma((-1)x) = \Gamma(-x)$, and $\Gamma(-x)$ is non-void.

Theorem 3. Let $\Gamma: X \to Y$ be linear multi-valued function on a vector space X to a vector space Y; then $\Gamma(0)$ is a vector subspace of Y.

6 Rade Dacić

Proof. For $y,y'\in\Gamma(0)$ we have, according to the definition of linearity, $y+y'\in\Gamma(0+0)=\Gamma(0)$, and the set $\Gamma(0)$ is closed with respect to the operation +. Associativity is included since $\Gamma(0)$ is a part of the Abelian group Y. For $\lambda\in R$ (= set of scalars, real line for example) and $y\in\Gamma(0)$ we have $\lambda\,y\in\Gamma(\lambda\,0)=\Gamma(0)$. So $\lambda=0$ and $y\in\Gamma(0)$ implies $0=0\cdot y\in\Gamma(0)$. In the same way: $\lambda=-1$ and $y\in\Gamma(0)$ implies $(-1\cdot y=-y\in\Gamma((-1)\,0)=\Gamma(0))$, i.e. $\Gamma(0)$ contains -y with y.

The following theorem gives the structure of multi-valued linear functions.

Theorem 4. If Γ is multi-valued linear function on a vector space X to a vector space Y, then for all $x \in X$ (for which $\Gamma(x) \neq \emptyset$) the set $\Gamma(x)$ is an equivalence class with respect to the equivalence relation ρ defined in the following way: $a \rho b$ if and only if $a - b \in \Gamma(0)$.

Proof. Suppose $\Gamma(x) \neq \emptyset$. Take $y, y' \in \Gamma(x)$. Since Γ is linear and taking into account the theorem 2. we have $-y' \in \Gamma(-x)$. But then $y-y' \in \Gamma(x++(-x)) = \Gamma(0)$ what was to be proved.

According to the last theorem, there is no difference, in the algebraic meaning of the word, between multi-valued linear functions on X to Y and single-valued functions on X to Y/ρ , where ρ is the equivalence relation defined in theorem 4. But if one takes into account topologies of X and Y, and considers continuous linear multi-valued functions these two functions are different. In other words, if $\Gamma: X \to Y$ is linear multi-valued function and if the single-valued function $\gamma: X \to Y/\Gamma$ (0) is defined so that $\gamma(x) = \Gamma(x) \in Y/\Gamma$ (0), then γ can be continuous (supposing that the topology of Y/Γ (0) is quotient topology) while Γ is discontinuous. We shall show it by the following

Example. Take X=Y=R (= real numbers with usual topology). Consider multi-valued function $\Gamma: R \to R$ defined in the following way: $\Gamma(x) = =([x], [x]+1)$ for $x \neq [x]$ and $\Gamma(x) = \{x\}$ for x = [x], ([x] is the greatest integer contained in x). This function makes a partition of R the elements of which are: open intervals (k-1, k), (denote them by D_k), and $\{k\}$, where k is an integer. We shall show that Γ is not continuous. Let x = k and $0 < \varepsilon < 1$. Take the open set $G = k - \varepsilon$, $k + \varepsilon$). G contains $\Gamma(k) = \{k\}$. But no one of the neighbourhoods of k can be transferred into G, since $\Gamma(G(k)) = (k-1, k+1)$ for all G(k) contained in (k-1, k+1).

The quotient topology of the space $\mathfrak{D} = \{D_k, \{k\}\}$ has D_k as isolated points and the basic neighbourhood of $\{k\}$ is $\{D_k, \{k\}, D_{k+1}\}$. The induced function $\gamma: R \to \mathfrak{D}$, defined so that $\gamma(x) = \Gamma(x)$, is evidently continuous. So, the continuity of γ in the quotient topology does not imply the continuity of Γ as multi-valued function.

To remove this discrepancy we shall equip $Y/\Gamma(0)$ with another topology. That is *choice topology* introduced in [2] in the following way. Let X be topological space and \mathfrak{D} a partition of X, i.e. a family of disjoint subsets of X which covers X (every element of X belongs to one and only one element of the partition). Let $\varphi: \mathfrak{D} \to X$ be function on \mathfrak{D} to X defined so that $\varphi(D) \in D$ for all $D \in \mathfrak{D}$. Such a function is known by the name *choice function*. Let Z be the family of all choice functions φ . By the *choice topology* we mean the coarsest topology on \mathfrak{D} for which all the choice functions φ are continuous.

A multi-valued function $\Gamma: X \to Y$ is called semi-single-valued if and only if $\Gamma(x_1) \cup \Gamma(x_2) \neq \emptyset$ implies $\Gamma(x_1) = \Gamma(x_2)$.

Theorem 6. Let X and Y be topological spaces, ρ equivalence relation on Y and let $\mathfrak{D}=Y/\rho$ be equipped with choice topology. Let Γ be semi-single-valued function on X to Y and Y single-valued function on X to \mathcal{D} , defined in such way that $Y(x)=\Gamma(x)$. Then the continuity of Γ implies the continuity of Y and conversely.

Proof. Consider $\gamma(x)$ as an element of \mathfrak{D} which is equipped with choice topology, and let $O_{\mathfrak{D}}$ be an open set containing $\gamma(x)$. The interior of the subset of Y whose elements belong to D (denote it by 0), for $D \in O_{\mathfrak{D}}$ contains $\Gamma(x)$, or, otherwise $O_{\mathfrak{D}}$ would not contain $\gamma(x)$ and be open. But since Γ is continuous, for O containing the set $\Gamma(x)$, there exists an open neighbourhood V of x such that for all $x' \in V$ the set $\Gamma(x') \subset 0$. Consider now that subset of \mathfrak{D} , the elements of which are those equivalence classes D which satisfy condition $D \cup O \neq \emptyset$. Denote that subset of \mathfrak{D} by $O_{\mathfrak{D}}$. According to the definition of choice topology, $O_{\mathfrak{D}}$ is open in \mathfrak{D} . We have $O_{\mathfrak{D}} \subseteq O_{\mathfrak{D}}$. But then, $x' \in V$ implies $\gamma(x') \in O'$, that is $\gamma(x') \in O$ and γ is continuous function on X to \mathfrak{D} equipped with choice topology.

Conversely, let $\gamma: X \to \mathfrak{D}$ be continuous. Let U be an open set in Y containing $\Gamma(x)$, $x \in X$ Consider the subset $U \mathfrak{D}$ of \mathfrak{D} which elements D satisfy condition $D \subset U$. Using choice function φ such that for those D which satisfy condition $0 \cap D \neq \emptyset$ and $CO \cap D \neq \emptyset$ it is valid $\varphi(D) \in CO \cap D$, we have that $\varphi^{-1}(0)$ is open in \mathfrak{D} . Put $\varphi^{-1}(0) = O \mathfrak{D}$. Evidently $\varphi(x) \in O \mathfrak{D}$. Since φ is continuous there exists an open set V in X containing X such that $\varphi(X') \in O \mathfrak{D}$ for all $X' \in V$. But then $\varphi(X') \subset O$ for all $Y' \in V$, so that $Y' \in V$ is also continuous.

Using previous facts concerning linear multi-valued functions and theorem 6., we can express the following main result of the paper.

Theorem 7. Let $\Gamma: X \to Y$ be linear multi-valued function on a topological vector space X to a topological vector space Y and let $\mathcal{D} = Y/\Gamma(0)$ be equipped with choice topology and let $\gamma: X \to \mathcal{D}$ be defined so that $\gamma(x) = \Gamma(x)$. Then: the continuity of Γ implies continuity of γ and conversely.

REFERENCES

- [1] C. Berge, Espaces topologiques, Fonctions multivoques, Dunod, Paris, 1959.
- [2] R. Dacić, Choice topology, Publ. Inst. Math., 8 (22), 1968 Beograd.

Institut Mathématique Beograd