ASYMPTOTIC BEHAVIOUR OF THE MAXIMAL ELEMENT OF A MATRIX

D. Ž. Đoković

(Communicated March 10, 1967)

1. Let \hat{R} be the additive group of real numbers with an additional element $-\infty$ such that $(-\infty) + a = a + (-\infty) = -\infty$, $-\infty < a$ for any real number a. Let $A = (a_{ij})$, $a_{ij} \in \hat{R}$, $B = (b_{jk})$, $b_{jk} \in \hat{R}$ be $m \times n$ and $n \times p$ matrices respectively. We define $A * B = U = (u_{ik})$ as $m \times p$ matrix such that

$$u_{ik} = \max_{i} (a_{ij} + b_{jk}).$$

The operation * is associative. If $C = (c_{kr})$, $c_{kr} \in \hat{R}$ is $p \times q$ matrix then (i, r)-th entry of A * B * C is

$$\max_{j,k} (a_{ij} + b_{jk} + c_{kr}).$$

In the sequel $A = (a_{ij})$, $a_{ij} \in \hat{R}$ is a fixed $n \times n$ matrix. We set

$$A * A = 2 * A$$
, $A * A * A = 3 * A$, ...

$$\mu(A) = \max_{i, j} a_{ij}.$$

In [1] the problem of asymptotic behaviour of $\mu(k * A)$ as $k \to +\infty$ was raised. We shall prove that $\mu(k * A) = ak + b_k$ where a is fixed and b_k is bounded.

2. A path P is a sequence $P = (i_0, i_1, \ldots, i_{\alpha})$ of integers taken among 1, 2, ..., n. For this path P we define

$$l(P) = \alpha$$
, $\sigma(P) = a_{i_0, i_1} + a_{i_1, i_2} + \cdots + a_{i_{\alpha-1}, i_{\alpha}}$.

A path $P = (i_0, i_1, \ldots, i_{\alpha})$ is simple if $i_k \neq i_j$ for $k \neq j$. A simple cycle is a path $Z = (i_0, i_1, \ldots, i_{\alpha})$ such that $i_0 = i_{\alpha}$, $i_k \neq i_j$ for $k \neq j$ otherwise. For any simple cycle Z we define

$$\varepsilon(Z) = \sigma(Z)/l(Z)$$
.

The number of all simple cycles Z is finite. Therefore there is a simple cycle Z_0 such that

$$\varepsilon_0 = \varepsilon (Z_0) = \max_{Z} \varepsilon (Z)$$
.

We shall write $l_0 = l(Z_0)$.

If $\varepsilon_0 = -\infty$ then $\varepsilon(Z) = -\infty$ for all Z. If $l(P) \ge n$ then P contains some Z as a subsequence, which implies that $\sigma(P) = -\infty$. Hence, $\mu(k * A) = -\infty$ for $k \ge n$.

Now we assume that $\varepsilon_0 > -\infty$. Any path P can be decomposed into simple cycles and a simple path. For instance, let n=5 and P=(3,2,1,4,5,4,5,2,4). This path contains the simple cycle $Z_1=(5,4,5)$. After deleting (5,4) from P we get the path (3,2,1,4,5,2,4). This path contains the simple cycle $(2,1,4,5,2)=Z_2$. After deleting (2,1,4,5) we get the simple path $P_1=(3,2,4)$. In this example we write $P=Z_1+Z_2+P_1$. We notice that this decomposition is not unique.

In the general case we have

$$P = k_1 Z_1 + \cdots + k_r Z_r + P_1,$$

where k_1, \ldots, k_r are positive integers and P_1 is a simple path. We must have $l(P_1) < n$. For l(P) = k we get

$$k = k_1 l(Z_1) + \cdots + k_r l(Z_r) + l(P_1).$$

We obtain

$$\sigma(P) = k_1 \sigma(Z_1) + \cdots + k_r \sigma(Z_r) + \sigma(P_1)$$

$$= k_1 l(Z_1) \varepsilon(Z_1) + \cdots + k_r l(Z_r) \varepsilon(Z_r) + \sigma(P_1)$$

$$\leq \varepsilon_0 [k_1 l(Z_1) + \cdots + k_r l(Z_r)] + \sigma(P_1)$$

$$= \varepsilon_0 (k - l(P_1)) + \sigma(P_1)$$

$$\leq k \varepsilon_0 + M_1$$

where M_1 is a constant independent of k. Since $\mu(k * A) = \max \sigma(P)$ where max is taken over all P such that l(P) = k we get

$$\mu(k * A) \leq k \varepsilon_0 + M_1$$
.

If $k = ml_0 + p$ where m and p ($< l_0$) are non-negative integers we take $P = mZ_0 + P_2$ where P_2 is a part of Z_0 and $l(P_2) = p$. Then

$$\mu(k * A) \geqslant \sigma(P)$$

$$= m \sigma(Z_0) + \sigma(P_2)$$

$$= ml_0 \varepsilon_0 + \sigma(P_2)$$

$$= k \varepsilon_0 - p \varepsilon_0 + \sigma(P_2)$$

$$\geq k \varepsilon_0 - M_2$$

where M_2 is a constant independent of k.

We have proved the following

Theorem. If
$$\varepsilon_0 = -\infty$$
 then $\mu(k * A) = -\infty$ for $k \ge n$. If $\varepsilon_0 > -\infty$ then $k \varepsilon_0 - M_2 \le \mu(k * A) \le k \varepsilon_0 + M_1$ $(k = 1, 2, 3, \ldots)$

where M_1 and M_2 are constants independent of k.

3. An example. Assume that A has the following form

$$A = \begin{bmatrix} -\infty & 0 & -\infty & -\infty & \cdots & -\infty \\ -\infty & -\infty & 0 & -\infty & -\infty \\ -\infty & -\infty & -\infty & 0 & -\infty \\ \vdots & & & & & \\ -\infty & -\infty & -\infty & -\infty & 0 \\ a_1 & a_2 & a_3 & a_4 & a_n \end{bmatrix}.$$

If we set

$$Z_1 = (1, 2, 3, \dots, n-1, n, 1),$$

 $Z_2 = (2, 3, \dots, n-1, n, 2),$
 \vdots
 $Z_n = (n, n),$

then

$$\varepsilon(Z_r) = \frac{a_r}{n+1-r} \quad (r=1, 2, \ldots, n).$$

For all remaining simple cycles Z we have $\varepsilon(Z) = -\infty$. Hence,

$$\varepsilon_0 = \max_r \frac{a_r}{n+1-r}$$
.

REFERENCE

[1] B. Stanković, L'élément maximal d'une matrice, Publications de l'Institut mathématique (Beograd), 6 (20) (1966), 23—24.