SOME INEQUALITIES WITH CONVEX FUNCTIONS

M. Marjanović, Beograd

(Communicated September 4, 1966)

Starting with an elementary inequality in 1., an integral inequality is proved in 2. and can be considered as a special case of inequalities treated in [3]. This inequality is used as lemma in proving Karamata's inequality in 3. ([2] and [1]) as well as a somewhat sharpened form of Steffensen's inequality ([3] and [1]). Note that our proofs are not only much shorter but show that these two inequalities are related being both the easy consequences of the inequality from 2.

1. Let $\{a_{\nu}\}$ and $\{b_{\nu}\}$ be two finite sequences of non-negative numbers such that

$$a_1 + a_2 + \cdots + a_{\nu} \geqslant b_1 + b_2 + \cdots + b_{\nu},$$
 $\nu = 1, 2, \ldots, n-1$
 $a_1 + a_2 + \cdots + a_n = b_1 + b_2 + \cdots + b_n$

what is usually written as $\{a_{\nu}\} > \{b_{\nu}\}$.

Let $\{a_v\} \rightarrow \{b_v\}$ and let $\{\alpha_v\}$ be a $\{\begin{array}{l} increasing \\ decreasing \end{array}\}$ sequence of numbers, than

$$\sum_{\nu=1}^n \alpha_{\nu} a_{\nu} \left\{ \leqslant \sum_{\nu=1}^n \alpha_{\nu} b_{\nu} \right\}.$$

Proof. Let $\{\alpha_{\nu}\}$ be increasing, then from

$$(a_1-b_1)+\cdots+(a_n-b_n)=0,$$

it follows that

$$\alpha_n (a_n - b_n) + \alpha_n \sigma_{n-1} = 0,$$

where $\sigma_{n-1} = (a_1 - b_1) + \cdots + (a_{n-1} - b_{n-1})$. Since $\sigma_{n-1} \ge 0$, we have

$$\alpha_n (a_n - b_n) + \alpha_{n-1} (a_{n-1} - b_{n-1}) + \alpha_{n-1} \sigma_{n-2} \leq 0,$$

where $\sigma_{n-2} = (a_1 - b_1) + \cdots + (a_{n-2} - b_{n-2})$. Continuing in this way, we get the above inequality. When $\{\alpha_{\nu}\}$ is decreasing the proof goes similarly.

2. For two non-negative functions g_1 and g_2 defined on [0, a], we write $g_1 \succ g_2$ to denote that

$$\int_{0}^{x} g_{1} dt \ge \int_{0}^{x} g_{2} dt \quad \text{and} \quad \int_{0}^{a} g_{1} dt = \int_{0}^{a} g_{2} dt, \quad (x \in [0, a])$$

Now, we can prove the following:

If f is integrable and $\begin{cases} increasing \\ decreasing \end{cases}$ on the interval [0, a], then

$$\int_{0}^{a} fg_{1} dx \left\{ \begin{cases} \leqslant \int_{0}^{a} fg_{2} dx. \end{cases} \right.$$

Proof. Let us put $G_{\dot{\tau}}(x) = \int_{0}^{x} g_{\dot{\tau}}(t) dt$, $x \in [0, a]$ and $\dot{\tau} = 1, 2$. If f is a step function which takes the value $\alpha_{\dot{\tau}}^{\circ}$ on the interval $[x_{\dot{\tau}}, x_{\dot{\tau}+1}]$, then

$$\int_{0}^{a} fg_{1} dx = \sum_{\alpha \dot{\tau}} \left[G_{1}(x_{\dot{\tau}+1}) - G_{1}(x_{\dot{\tau}}) \right]$$

and in virtue of 1., when f is increasing

$$\int_{0}^{\alpha} f g_{1} dx \leq \sum_{i} \alpha_{\tau} [G_{2}(x_{\tau+1}) - G_{2}(x_{\tau})] = \int_{0}^{a} f g_{2} dx.$$

So, the above inequality is proved when f is a step function. Since the set of step functions is dense in $L_{[0, a]}$, the inequality holds for arbitrary f.

3. Karamata's inequality: Let $\{a_{\nu}\}$ and $\{b_{\nu}\}$ be monotonously decreasing and such that $\{a_{\nu}\} \succ \{b_{\nu}\}$. Let f is a monotonously increasing function on $[0, a_1]$. Let us put

$$A(x) = \sum_{\nu=1}^{n} m\{[0, x] \cap [0, a_{\nu}]\}, \quad B(x) = \sum_{\nu=1}^{n} m\{[0, x] \cap [0, b_{\nu}]\}$$

(mS is the measure of the set S). Then

$$A(x) \leq B(x), \qquad A(a) = B(a)$$

and A'(x) and B'(x) exist everywhere except in a finite set of points. So by the inequality in 2,

(*)
$$\int_{0}^{a_{1}} f dA(x) \geqslant \int_{0}^{a_{1}} f dB(x).$$

Putting $F(x) = \int_{0}^{x} f dx$, where F(x) can be an arbitrary continuous convex function when f is arbitrary, we get

$$\int_{0}^{a_{1}} f dA(x) = n \int_{0}^{a_{n}} f dx + (n-1) \int_{a_{n}}^{a_{n-1}} f dx + \cdots + 1, \quad \int_{a_{2}}^{a_{1}} f dx$$

$$= F(a_{1}) + F(a_{2}) + \cdots + F(a_{n}).$$

Now the inequality (*) can be written as

$$F(a_1)+F(a_2)+\cdots+F(a_n)\geqslant F(b_1)+F(b_2)+\cdots+F(b_n),$$

what is known as Karamata's inequality.

4. Let $0 \le g(x) \le 1$ and $f \searrow$ on [0, a]. Then

$$\int_{0}^{a} fg dx \leqslant F\left(\int_{0}^{a} g dx\right)$$

where $F(x) = \int_{0}^{x} f(t) dt$.

Proof. Let $c = \int_{0}^{a} g dx$, then $0 < c \le a$ and let

$$\tilde{g}(x) = \begin{cases} 1, & x \in [0, c] \\ 0, & x \in [c, a] \end{cases}.$$

Since $\tilde{g} \succ g$, we have by 2.,

$$\int_{0}^{c} f dx = \int_{0}^{a} f \tilde{g} dx \geqslant \int_{0}^{a} f g dx$$

what is Steffensen's inequality.

Now we state and prove somewhat generalized form of Steffensen's inequality:

Let $g(x) \ge 0$ and $f \searrow$ on [0, a]. Then

$$\int_{0}^{a} fg dx \leqslant \gamma \int_{0}^{c/\gamma} f dx,$$

where $\gamma = \sup \{g(x); x \in [0, a]\}.$

Proof. Let

$$\widetilde{g} = \begin{cases}
\gamma, & x \in \left[0, \frac{c}{\gamma}\right] \\
0, & x \in \left[\frac{c}{\gamma}, a\right]
\end{cases}$$

then $\tilde{g} \succ g$.

REFERENCES

- [1] Beckenbach E. and Bellman R., Inequalities, Springer-Verlag, 1961.
- [2] Karamata J., Sur une inégalité relative aux fonctions convexes, Publ. Math. Univ. Belgrade 1 (1932).
 - [3] Fan K., Lorentz G., An integral inequality, Am. Math. Monthly, 61 (1954).
- [4] Steffensen J. E., Bounds of certain trigonometric integrals, Tenth Scand. Math. Congress 1946, 181—186. Copenhagen, Gjellerups, 1947.