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AN APPROXIMATE SOLUTION OF THE BOUNDARY LAYER
ON A BODY STARTED FROM CERTAIN PRECEDING
NON-STEADY MOTIONS

Radomir Askovi¢
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1. Introduction. — For the motion of a becdy started from certain
preceding non-steady motions, we derived [1] equations of the additional
boundary layer as follows:

ouy ouy duy ouy 0 u, Ouy 0 u,
— At Uug— Vg — +Us— F+Ug PO+ Uy =
ot, 0x oy ox 0x oy oy
2
an :()Ud+—Ud0Ud+Us0Ud+UdaUs+vi@
21, 0x 0x ox 0y*?
Oua  0va_
ox 0y

with boundary and initial conditicns:

ug=v4=0, for y=0; ug=Uy(x, t), for y= o0;
ug=24=0 for 1 =0.

where

t — time that elapsed since the beginning of preceding motion,

. T. — instant at which additicnal motion takes place,

t, — duration of additional motion, .

(us, v5) — projections of velocity in the ,,preceding’” boundary layer
which continues formally its development for =T, ‘

(uy, v;) — projections of velccity in the additional boundary layer,

x — longitudinal coordinate, as measured from the front stagnation
point along the body’s contour,

y — transvers¢ coordinate,

o — density of the fluid,

v — kinematic viscosity.
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52 Radomir Askovié¢

In accordance with procedure developed in [1], solutions of the boundary
layer are given by the following expressions:

U=us+ Uy
D=9+ 7y

In order to solve equations (1.1), a process of successive approximations
was formulated. Thus for the first approximations [1], the following equations
were obtained:

2
_%—v 0——u0 =a Us +1[Ud(Us_uS)J
ot oyr ot 0x
(1.2) Oty 00y _
dx 0y
uoz(), y:O, u():Ud(x, tl)s y=00.

L ()~“1 Ud‘)Ud+__( Uy)— v%—
a1, 0y2 ox Ox ay

ou, ou, ou; ou
—(us +Up) ———Ty ———Uy ———10,
(1.3) ox oy ox oy
ou 0wy
ox 0y
l u =0, y=0; =0, y=oo.

While solving these equations considerable difficulties arise from the
presence of functions u, and v, in the right-hand sides of these equations.
These functions depend upon the transverse ,,y”> — direction only implicitly

y
2]/vt
the value 7m=2 replaces the theoretical value on the upper boundary of the
boundary layer 7= oo, with a minimum discrepancy of only 0.44%,. Then a
solution was found (1) which corresponds to the interval 0<{%n<{2. A trans-
formation had to be carried out of the function .U, into new variables of

. It was possible to show [1] that

through the non-steady variable =

L2 ]

A by expansions in series and

2y/v1,

retention of a number of terms. This limitation of the interval m was reflected
in difficulties which arose when working out the velocity profile in order to
obtain that the velocity in the boundary layer at its upper boundary has
precisely the value which the external potential velocity had at the same
position. The ,,completion” of calculations of the boundary layer, in the sense
given above, will be achieved by investigating also the interval 2<{v<Coo. As
we have noted, here u,~U,, where U, is the external preceding potential
velocity. But where u,~U,, we have ©,/~0, the more so since transverse
motions are always negligible.

Because of the subsequent conditions it should be noted that the case

u,~ U, may occur even very closely to the contour of the body, depending
upon the duration of the motion itself.

the additional boundary layer, ,,t,”” and 7%=
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By using these conclusions from (1.2) and (1.3) it is possible to simplify
the equation for the additional boundary layer:

[ ow_ P o,
ot, 0y o
a9 ou 0w,
ox Oy
uy=0, y=0; uy=Uy(x,1,), y=o0.
2
[ om0y, 0Us, 0
ot 2y? ox Ox
_(Us‘f‘uo)%—'vo%_uoa(]s
(1.5) ox 0y ox
M+_‘)ﬁ=0
o0x 0y

u =0, y=0; uy=0, y=oo.

2. Additional impulse following preceding motion started impulsively.
— A cylindrical body was started impulsively from rest [U,=U (x)] At an
instant, it was given an additional impulse. The equatlon (1.4) in the first
approximation now bccomes

CL N
ot 0 y?

with the following boundary conditions:

-0

u,=0, y=0; uy=U(x), y=oo.
If the solution of the preceding equation is sought in the form of
Q.1 g = U (x) o (1)
we obtain for the unknown function C; (n) the equation

11

o +27 ;/:0

with the following boundary conditions:

%(0)=Ze(0)=0,  Zo(e0)=1.

Its solution fulfilling the given boundary conditions is
2 /|
2.2) Co(n)— Erfn = — f e dy.
Vx
0

From the second of equations (1.4) it is possible to obtain w0

(2.3) 2y=—2)v1, UG (1)
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Thus, the first of the equations (1.5) yields
ouy 0% u,

2.4 - =UU (3—2%3—Lg1+ % %0)-

( ) ()tl oyz ( Co Co] COCO)
Now, if the solution of this cquation is sought in the form of
(2.5) u, =, UU' L5 ()

we obtain from (2.4) as follows

11

V1298 —4% = —403—=2%—%d+%%0)
and

rrr

(2.6) 2+ 208 —4% (= —4 (P, Erf>n+P, Erf n+Py)
where

P =—1, P,= 2 e,

V_
2 - -
P, ——e""lz—ie‘712 +3.

ke k

Seek the particular integral of this non-homogseneous differential equation
in the form

2.7 Cip ()= X () Erf>+ Y (n) Erfn+S(n)
The substitution of (2.7) into (2.6) for the unknown coefficients -—
functions X (%), Y (%), S(n) leads to the differential equations:
X"+29X —4X=4
8

Y +20Y —4Y=——— X' e "—4P
(2.8) K V= g

8§ +20S8—4S= _38 Xe—ﬁl—% Y e-"—4 P,

] 4
The solution of the first equation belonging to the recursive system
(2.8) is: _ _
X(n)=K (1 +2¢)—1
where K, is an arbitrary constant.

When this value is introduced into the right-hand side of second of
the equations (2.8), the following is obtained:

32 )ne"'2+8

anl/n

One of the solutions of this equation, which corresponds to the present
problem, runs as follows:

y(i)=(—Vf‘§Kl . ﬁ);e_,—,z_z

Y2 Y —4Y - (
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Finally, by solving the third ¢f the equations (2.8)

— 16 — 4 - _
S"+2n8—4S= [( K + 8>n —(2 K + 4)] *2ﬂ2+£e—’"2—12
s

ki T T T

we show that the solution of this equation in a closed form can be obtained
cnly if the value of the constant X, is

1
K=

Thus, we come eventuwally to the corresponding solutions of (2.8):

1
X(n)=n*——
(Mm)=n >
(2.9) Y(vz)~l e w2
— -4 -
S(n) = 2 et~ p-m 3,
T 3w

Hence, the particular integral (2.7) becomes completely definitc. Since
the particular solutions of the homcguneous part of the differential equation
(2.6) are

Cia()= 1427
ro— 1 — - I - -
4 =— 1+ 29 Erfn+—=vne™
1n (M) 4( n?) Erf 2‘/7:71
it is possible to formulate the general solution of the initial equation
;- - 1 - — 1 - - ;-
2.10) Li(np)=C (1 +27)2)+C2[~4-(1 +27%%) Erfq +5—‘7: v;e*’in—#C,p(n).
Y
With boundary conditions
L1(0)=0,  Li(e)=0

we ¢btain the following values for the constants:

2
C,=— "3, c,= 3 410

3x 3n

The addition of (2.1) and (2.5) results in the velocity of the additional
b_undary layer:

(2.11) ug=U%o(n) + 1, UU 1 (m).
Sirce the ‘velocity of the preceding bcundary layer is known [3]:

n

U= | evdy=Uf;
Vﬂfe Y=Uf1(n)
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the total velocity in the boundary layer during additional motion is

u=Uf1()+ Ulo(n) +1, UV Z; ().

The universal functions (2.2) and (2.10) have been worked out [1]
and their graphs are shown in Fig. 1.

(2.12)

U-tte)

U Urz)

-7

.7

Xto

]

Fig

.1

It is interesting to apply
(2.12) in the same instants ard
on the same places along the
contour of the circular cylinder as
in the case of the exact solution
[1] which corresponds to the in-
terval 0<{n<C2. Thus, it would
be possible to check whether the
values obtained agree or disagree
with those obtained by another
method, as well as to follow the
asymptotic development of the
velocity profile, as the distance
from the body contour increases.

Consider a circular cylinder, having radius R=150 cm, given an additional
impulse (U, =10 cm/s) after the preceding impulse (U.=10 cm/s). We
calculate now the velocity in the boundary layer, by applying the formula
(2.12) to several points on the contour at different instants. Here we give
only graphs.
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In Figs. 2, 3 and 4, the lower parts of the velocity profiles were worked
cut by the ,,principal solution” corresponding to the interval 0<%n<2 [l].
The agreement of our solution with this ,,principal” solution is highly remar-
kable. The maximum discrepancy of the velocity values at the point y = 0.4 cm
in all the three cases in these graphs does not exceed 0.25%. Moreover, our solu-
tion (2.12) continues to give satisfactory results in the entire area up to the body
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contour itself, as suggested by Fig. 4. This is rather significant since the
solutions (2.2) and (2.10) are far simpler with respect to the corresponding
solutions for the interval 0<7n<2.

3. Uniformly accelerated motion following a preceding impulse. — A
cylindrical body started to motion by an impulse was given at an instant
t,=0 an additional uniformly acc:lerated motion.

The equation for the first approximation is

ou, . Fuy

ot, 0)?
u,=0, y=0; uy=t, W, y=oo.

Its solutions should be sought in the form of

3.1) uy =1, W Lo (n).
When (3.1) is substituted in the above equation, a differential equation

rre

o +27m% —4Lo=—4
will be obtained for the determination of the function, the boundary condi-
tions being
(0 =80 (0)=0,  Lo(ee)=1.
Its solution, which fulfil these conditions, is
- — - 2 - - =
(3.2) Co(n)=(1+2nZ)Erfn+F ne " —2y2
™
From the equation of continuity for the first approximation we find
the component ,,v,"":

Y= —2¢ VV—tl W, (n)
and, thus, the equatibn for the second approximation becomes
om P

_EWW (14880 — L) + 1, (UW' + U W) (1—L0).
xt 2y?

(3.3)

If the solution of this equation is sought in the form of
(3.9 = WW' Ci () + 11 (UW' + U W) L2 (n)

we obtain the following differential equations:

s

¢ w2t =128 = —4(1+%%0 —L0)

(3.5) / ,
L0)=%:1(0)=0, Li(0)=0

1r:

¢y +27m%s —8Ls=—4(1—Yo)

(3.6) , /
5L (0)=22(0)=0, T2()=0.
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Solutions in a closed form have been found for these equations [1] but
we shall not discuss them here. These solutions are:

;- — =, 8- 1 o
4 =C ( 1+672+4v*+— 6>+C, ——(1+6 244t
1(m) € 1 i 157) 2 354 ) v

\

8 — - 1 [~ _— 33 -
) (I —Erfn)———— [+ 73+ = e |{+| K [ 1+
15?1)( ) 720%(?} 7 471) ] [1(

_ _ _ 4 _ _
+6n2+4n“+~8—n°>— 722—2“')2—2 Erfz?ﬂr[ (ﬁi—K1~
3 [ 5V w

15 3
7\~ /112 8 \— 16 -] - 8, .
3.7 —— |1t =K, — M> Py — K nle "+ —nt4+492—
S 3;/71)7’ (15Vn ayR T sy 3
16 — 2y .~ 1 .- — _ g . 7 _
N+ Erfn+—Qn*+7n2+8)e-2m + (‘WYLFV‘_ _
15w } g TS YN
i6 - 4 - — 16 —
e e Y, o SR
15]/7':) 3T sy
5 24
Ci=———, C,= 1024 +288; K, 3
12w 157r 12

, _ 4_ 4 _
Cz(’)):Cl(1+4n2+? n4>+C2[315<1+4n2+%7)4) (l—Erfn)—

(3.8)

5 - - 2 - - ~
(_’H’l )e_m —(1+29) Erfn——=ne " +(1+27%)
24]/7': &5

C,=0, C,=-—32.

The sum of thz expressions (3.1) and (3.4) gives the velecity of the
additional boundary layer:

(3.9) U=, Wl () + 11 WW i () + 11 (UW' + U W) L2 ()
The total velccity in the boundary layer is
(3.10) u=Uf1()+ 1L, Wl (M) + 6 (UW' +U W)L () +11 W' 1 (7).

The universal funciions (3.2), (3.7) and (3.8) have been ploited in
Fig. 5. As an example, we shall calculate now the bcundary layer on a circular

cylinder with the radius R, which was started impulsively (U:Z U sin%)

and given, at a later instant, an additional consiantly zccclerated motion

(W =2V,sin %) The numerical data are: R=50 cm.

Uyo=10 cm/s. Vo=10 cm/s%.
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Fig. 5 shows that the agreement of this solution with the preceding one is
quite satisfactory. The discrepancy of the velccity values at y=0,4 cm is
only 0.17%,.
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4. An impulse following a constanily acceleratcd motion. — A cylindrical
body moves with constant acceleration (U,=t W) from rest. At an instant,
the body is given an additional impulse (U,= U). The equation (1.4) for the
first approximation, now, becomes:

oy Oty
a9t 0y?

the boundary conditions being:
u,=90, y=0; uy=U(x), y=oo.
If the solution of this equation is sought in the form
4.1 ty = U (x) o ()

the function Cﬁ(i) will have the value (2.2).
The equation for the second approximation (1.5) now teccomes

ou,  0*u,
h 20

“2) > S UU'P,(n)+ T(UW' + U'W)P,(n)+
. 1 Y

+1,(U'W+UW) Py (n)

where the known functions are:
(4.3) Py )= 11—+ 50, P=Py=1-".

If the solution of (4.2) is sought in the form
@4 w1, [UU' G @)+ TUW U W) G @)+ EUW U W)L )
the following differential equations will be obtaincd:

(4 + 208 —4t = —4P (n)

(4.5) &+ 208 —4%=—4P,(x)

rrr

8 200 —8% = —4P(x)
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with the following boundary conditions:
(CI(O) i (0)=%i(0)=0
(4.6) 6,(0)=8(0) =% (w)=0
1(;(0):@(0)::3(”)*0-
The solutions of these equations are:

, — 1 — — e
§1:C1(1+2n2)+C2[7(1+2n2)Erf7)+3i:ne T‘Z]—i—
r

_252_ 4 -2

(T Y B e g 2 e
) rfin+-—=me rfn+—e e " +
2 T T 3n
Clz—i—l, C2:~8~+2;
3n 3w

/ — 1 — — 1 - = —
L=C (1+29)+ C2[7(1+27;2)Erf7; +5—_7)e 7’2]——Erf~r;+1
T
Ci=

G=0 (1+4n +-y; [iz(l+4v; +—7) )(I—Erfn)—

1
24l/ ( ] ~Erf7)+——-
C;=0,

The sum of functions (4.1) and (4.4) determmes the velocity of the additional
boundary layer. Since, according to Blasius [2], the velocity of the preceding
boundary layer is given by the following expression:

us=(T+1,) W(x) fi’ ()
the rcsulting velocity in the boundary layer will be
u=(T+1) Wfi(n)+ UL @)+, [UU 8 (n) +
+T(UW +U' W)Yo+ 0w + U W) ().

5. Uniformly accelerated motion following a preceding motion started
with a constant acceleration. — Here, the functions U, and U, are

Us=tW(x)’ Ud:tl W(x)’

and the equation (1.4) becomes

(4.7)

duy _, Oy _
ot o0y

Its solution, in view of the initial condition, can be found in the form of

5.1) uy=t, W (x) Lo (n)
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where g (*71) has the value (3.2). Hence, the equation for the second appro-
ximation (1.5) is
ou _ Fuy
01 0y?

=1, 2TWW' P, () + 11 WW’ P,(n)
where

P —=1-%0,  Py(m)=3—2%—Lo +%%o.
If the solution for this equation is sought in the form of
(5.2) u =13 2TWW' L) + L WW' Ca()
we obtain the equation

(5.3) { %1 +27)C1—8C1*—4P (Yl)

1244

2 4208 — 120 = —4P,(n)
with boundary conditions:
%, (0)=%1(0)=L1(e0)=0
{ £, (0) = L2(0) =L2(o0) = 0.

The solutions of the equation (5.3) are given in a closed form

i =C, (1+47;2+ : )+C [32(”47; +%n )(1—Erf7))—

(5.4)

1 5 - — 2— 2 -
+ —(1+2) Erfr——me " +292+1
241/7:( 7 n) ] ( ) Erfn Vﬂn !
C,=0, C,=—32.

! S a4Te, 8 1 - —
L2m)=C (l P 6N+ At — 6)+C —(1+6 244qt+
2(n) 1{ 1707 /! 157) » 384 N 7

8 —, oo 33\ m
— 1—Erfn)—- — [+ TR+ e |+
n)( ) 720/ (n O n) ]

_ — 8 — —
+1 K (1+6 2+4 4+-~716>——
[ 1 b n 15 3 |

Al m s e

2 ;z_%] Erf+

B— 1
=+ 2P ———=n—— Er +—— 2yt 8)e 2T
2 15V n 3} f o Q@nt+ 72 +8)e ?
8 — 1 — 16\ == 4 —
=t = e ——mt —n+1
(3;/7:"] 3Vrn K 1571:) 3 ]5V1rn
C,=—K, = —i, C, 1024 o4

12 15w
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Thercfore, with the universal funciions cobiained as described above,
the velocity in the boundary layer becoms=s completely d:fined

(5.5) u=(T+t)Wfi(n)+1, Wlo()+ 3 2TWW' {1 (n) +
| p—
L2 wwr 5 22 (n).

6. Power series accelerated motion following an impulse. — If a cylin-
drical body was mov1ng after having been started by an impulse U;=U (x)
and thereupon was given an additional motion specified by U,= At W (x),
from (1.4) it follows that

0ty . ?u,

ot 0y?

=Adat? ' w

6.1
u,=0, y=0; uy=Uy, y=o00.

If the solution cof this equation is sought in the form of
(6.2) Uy = At W (x) @ ()

for the determination of the function ®o(x), the substitution of (6.2) in
(6.1) results in the differential equation

(6.3) Dy + 27Dy —4 oDy~ —
where boundary conditions are
(6.4) D, (0) = Do (0)=0, P (o0)=1.

The solution of (6.3) is given in terms of the gamma function I'(x-+ 1)
and Gauss’ function of crror g, (n):

(6.5) Do ()= 1 —-22¢T (a+ 1) g, (1)

: 2 (0 —myre=vdy
(6.6) a0 o, H)[w Wre-vdy

1

Since it is possible to obtain v, fiom the cquation of continuity
vy= — AW 2Vvt, &y (1)

no diff.culiies should bc encountercd in sctting up an equation for the sccond
approx:mation:
0 0?
S VT g uw U Wy (1 — o) +
ot, 0y?
(6.7) " .,
FAWW (1— Dy + D, Dy )

which is to be solved for the following boundary conditions:
u; =0, y=0; =0, y=o.
If the solution of the equation (6.7) is sought in the form of
(6.8) w=ATUW U W) () + 215 ww @, ().
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Then, from (6.7) there follows a differcntizl cquation
® 120D —4(+1) D=4 (Dy—1)
(6.9) B
by L2 By —4 2+ 1) Dy 4(Dy— D, Dy —1)

with boundary conditions

@, (0) = P; (0) = Dy (20)=0
(6.10) 1(0) =P (0) = Py ()
D, (0) =D, (0) =Dy(00)=0.
The solutions of (6.9) fulfilling the conditions (6.10) are

@ () = =22 T (2 +2) gur1 () + 2247 (2 + 1) g2 (1)

®) (7) =221 T (o 1 1) g, () - 2" DD e, @)

F(oc +-2—)

a1 (e +1 — ot - . .
et B@ED @) 2 @ ) | 8 1 () —ga (n) gae (1) |—
o+ 2 xt
. 2 2 -
2452 (2004 2) 3—4a 2a M (e+1) LT (x+1) Zaaet ()

2+2oc+oc+2_ I\ 5\ 2 3
F(H--—)r(m—) r2(a+;)
2 2 2

Thus, we have the solution of the boundary layer for the duration of
the additional power series accelerated motion:
u=Uf1 )+ AnW Dy(n)+Aei™ (UW U W) D (n) +

(6'11) 20+ 1 ’
AT W d1(y).

7. Power-series accelerated motion, following a preceding motion with
constant acceleration. — If a body was moving with a constant acceleration

U,=tW(x), and thereupon was given an additional motion Uy= AtV (x) from
(1.4) it follows

e BV R P S A ¢
(7.1 ot 0y? )
uy=0, y=0; uy=U,;, y=oc0.

If the solution of this equation is sought in the form of

uy = A 17V (x) ®o (1)

for the deicrmination of the function @ (v), obviously we shall obtain an
cquation identical with (6.3) and thus its solution is (6.5).



64 Radomir Askovi¢

The equation for the second approximation of the boundary layer velo-
city now becomes:

LN ‘Lu—lAvATtl(W Vewv'y(1—®g)+ At5(W'V +

(7.2) ot, 0y
WYY (I—@g) + 2 17°VV' (1 — Dy + D, D).
Because of the initial condition u, =0 for ¢, =0, its soluiion should be sought as
u = AT W VEWV)YO () + AT W'V +
(7.3) o
WV o)+ A2 vy @ (n).

The substitution of (7.3) in (7.2) leads to a differential equation
@) + 27D —4(a+ 1) D= —4 (1—Dg)
(7.4) @, + 20 @) —4 (o + 2) 3= —4(1— D)
@) +27 @y —4Qu+1)Dy=—4(1— Dy + D, Dy )
which have to be solved for the conditions
(@, (0)= @ (0) = P () =0
(1.5) @, (0) = @, (0) = P2 (0)=0
@, (0) = D3 (0) = P () 0.
The solutions of (7.4) which fulfil the conditions (7.5) are

®;(0) = 22T (@+ 1) g, (0) — 22" T (2 + 2) gay (D

8x+2 M ()

(1) = 2" I(a+ 1) ga(q)— 22" 'T(@+ 1)
a+z(0)

2 .
;3 (n) = 22“+‘F(a+l) % g () 22 r (aisl—)g 1 (n)+
1+« 1"( _1__) 7
o~
2

I'(x+1 — n n
+22a~1_££_)g“_1 (n) + 242+ T2 (0 + I)I:g2 iG)"ga (1) Zats (71)]“
a2 ats

— 2 ;
24027 24 2) 3 4oc+ 2a M@+1) N

2420 a+2 F(HLF(HE)
2 2

I Pt

2 I‘Z(OH— 3)
2

8ra+1 (71)
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The addition of the preceding boundary layer velocity with expressions for
iy and ., results in the total longitudinal velocity in the boundary layer
u=(T+1) Wfi(n) + A1V (x) @0 (n) + AT 7'V +
(7.6) , , ,
+ VYD () + AT WV + W V) Dy () + 25T vy @5 (n).

The application of the equation of continuity readily yields the value
of the velocity second projection ,,2”.

8. Conclusion. — By this solution the additional boundary layer, or
the boundary layer for the duration of the additional motion, acquired a
property of an asymptotic boundary layer, i. e., it reaches the infinite distance
from the body. Practically, however, we know that the boundary layer thickness
is limited and that it is only several millimeters (Example: it is a well-known
fact that the thickness of the boundary layer is a quantity of the order of

Ty 2
magnitude -l;=\/2; if it is assumed that /=1 m, V=1 m/s, v=0,01£
VRe 14 s

(water at 20°C), then \/l—VV=0,1 cm=1 mm, and thus it is proved that the

boundary layer thickness is really very small.)

The solution of an asymptotic boundary layer is of great importance
because it involves the entire space around the body; practically, from
y=0,4cm to y=oo since a good agreement has been proved of this solution
and a preceding one [1] at the same place, with a minimum discrepancy of
0.25% at most.

Of particular interest is the fact that this solution continues to give
good results even in the immediate vicinity of the body down to the very
contour of the body, negligibly disagreeing from the exact solution [1] for the
same space.

It is not unrealistic to consider that this solution in the first approxi-
mation represents also the solution of the non-steady boundary layer on a
body which was started from the state of certain preceding steady motions,
even with the possibility of a certain rough differentiation consisting in either
this preceding motion having been started impulsively, constantly accelerated
or powerseries accelerated — by means of the “preceding” external potential
velocity “U,”, which represents the preceding motion in the equations (1.4)
and (1.5).
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