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NOMENCLATURE

x, y — usual coordinates of the boundary layer,

u, v — velocity projections in directions of axes x and y,
I — characteristic dimension of the body,

ry (x) — radius of the body cross section,

U(x) — main stream velocity,

e, v, w=const — usual symbols for the well known physical properties of
the fluid, :
p — pressure,
T, =u(U,),—o — skin friction,

3 (x) — boundary layer thickness,

A, (x) — displacement area and

A,(x) — momentum defect area.

The meaning of other symbols used will be given upon
the introduction of such symbols in the paper.

§ 1 — INTRODUCTION

Problems of an axial flow past bodies of revolution can be divided
into two groups. The first of these comprises problems in which the ratio
between the boundary layer thickness and the radius of the body cross section
can be considered much less than unity, while the other group comprises those
problems in which the above ratio is approximately equal to unity, or even
greater than unity. For the sake of brevity, the problems of the first group
are called problems in which the transverse curvature effect has been neglec-
ted. It is a well known fact that in this case the boundary layer equations
by means of Mangler-Stepanov transforms are reduced to those of two-dimen-
sional problems. This fact made possible for problems of the first group to
be solved by Salnikov [2] by means of Gortler’s expansion [1] in a very general
case of flow: a flow past solid bodies of revolution with the forward stag-
nation point and a flow past ring-like bodies of revolution of arbitrary shapes
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involving arbitrary distributions of the main stream velocities, The problems
belonging to the second group are, also for the sake of brevity, called problems
in which the transverse curvature effect has been taken into account. There
exist so-called generalized transforms of Probstein- Elliott [3] by means of which
in this case the boundary layer equations are reduced to those of the twodi-
mensional problem, but only formally, since in them the kinematic viscosity v
is not constant, but is the following function of the coordinates: v=vr?/rg2.
Since, however, such a two-dimensional problem has not been solved, these
transforms are of no practical importance. This was probably the reason for
a relatively small number of papers dealing with this area of the boundary
layer theory, such papers dealing with some individual special cases only. For
instance, the problem of a flow past a semi-infinite circular cylinder in a
region in which 3 (x)<7,(x) was dealt with by Seban-Bond [4] and Kelly [5],
while the interval in which 3 (x)>r,(x) was dealt with by Glauert-Lighthill
[6] and Stewartson [7]. Similar solutions of the basic equations, and some other
special cases as well, have been dealt with in a paper by Probstein-Elliott [3]
mentioned already in one of the earlier papers [8] of the present author.
The purpose of this paper is to solve the problems in which the trans-
verse curvature effect is taken into consideration for a general case of flow
as was done in [2] and in problems in which 8§ (x)<r,(x). This puprose is
achieved by introducing the so-called characteristic parameter which is propor-
tional to the ratio of the boundary layer thickness and the radius of the body
cross section, thus obtaining a solution for the interval in which this ratio is
less than unity, in the form of a potential series in terms of a characteristic
parameter, while the solution for the region in which this ratio is greater
than unity is of the form of an asymptotic series, the specific form of which
is given by a logarithmic behaviour of the velocity profile within the imme-
diate vicinity of the body. Finally, a number of numerical examples is given.

§ 2 — SOLUTION OF THE PROBLEM WHEN 38 (x)<r,(x)

The basic equations of the boundary layer for an axial flow past bodies
of revolution for an arbitrarily given ratio of the boundary layer thickness
and the radius of the body cross section are as follows:

uu, +vu, =UU' +v ( uy},+~—1— uy)
(1) oty
[(ro+»ul +(rg+»)v],=0
with the following boundary conditions:
for y=0 u=v=0
for y—»>ow u-U(X).
A transformation of these equations has been carried out already in a

convenient way [8]. New variables

x
Ez—l—f Urg dx, v):——Ur‘Ly_ <1+~y—>,
v L2 vwLJ2E 2r,
0

$(x, W=vyLV2EF(, )
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have been introduced, wherc the stream function ¢ (x, y) is defined by the
following relations:

(r0+y)u:¢y, ("o+y)v:¢x-

Hence, for the dimensionless stream function F (%, m) the following transformed
equation of the boundary layer was obtained:

(2) me+Fan+g(‘E)(1—F12n):2£(FnFin“FEan)“A(E)(V]ann+an)

for which the boundary conditions were

for n—>oo F,—1.
In this equation we have
28vL2U’ 2vL)2E
- AE) -
B® Ui ® Ur2

where B (8) is the so-called principal function which is well known {2], while
A (%) is a quantity which it was shown [8] is, in a most general case of flow,
proportional to the ratio J(x)/ro(x), this being the reason for calling this
quantity a characteristic parameter.

For those values of the variable £ for which A (§)< 1, the solution of
the equation (2) was sought in the form of a series:

3 FE n=FE D+FE DAG+FE DA @+ - --

where for the first term F, (€, n), which gives an exact solution for the case
when the transverse curvature effect can be neglected, we obtained the well
known Gdrtler’s equation [1]. The equation defining the second term of the
series used is linear and is given as follows:

Flvm*n+(F0+ZEFOZ)Flvm"zEFonFlin_{2£F05n+[2B(E)+Y(E)]F0n}F1n+
+ 28 Fyny Fie +[1+y (O] Foun Fy = — (1 Fomyn -+ Fon)
with the boundary conditions:

for 7=0 F,=F,,=0

4

for n—>oo F,,—~0,

In this equation, in addition to B(£), a new principal function v (§) occurs,
and is defined by:

2EA'(©)
Y =" =1—a(@)B®)
A®)
where o(£) may be called an auxiliary principal function:
_ Ur(’)
ot(i) = 1 +2‘l],r0.

In the paper [8] already mentioned, similar soluiions of (2) were con-
sidered as well as those simple solutions in which the coefficients of the series
(3) are functions of the variable v only. Here, we propose to discuss a very
general case.
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It is well known that Gortler’s equation for the first term of the
series (3) has been solved by expansion into a series of the principal function
B(%) [2] and by introducing a system of universal functions [1] which were
such that it was possible to tabulate them once and for all. In order to obtain
a solution for the equation (4) in the same manner, it is necessary to consider
the possibility that the new principal function v (£) and the auxiliary principal
function «(£), can be expanded into a series of the same form as was the
case with the series used for the function B (£). If the expressions for U(x)
and ry(x) [2] are taken into account, then it is possible to show that in all
rotationally symmetrical problems important in practice, the new principal
function v (£) can be expanded into a series of the following form:

YE-S yu b
k=0

where n=1 and y,=1, for ring-like bodies of revolution with an acute leading
edge, and n=1/2 and v,=—1/2, and yv,=0 for solid bodies of revolution
with a forward stagnation point and ring-like wings, respectively.

Now, the solution of (4) can be sought in form of a series:

) FiEm)=3 Fou(
k=0

so that for the first term we shall obtain the following equation:
(6)  Fio + Foo Fio—(2 By +Yo) Foo Fio+ (1 +7v,) Foo Fio = — (1 Foo + Foo)
with the boundary conditions:

Fys(0)=F10(0) = Fig () =0.

. For the remaining coefficients-functions of the series (5) we shall obtain
a recursive system of ordinary, linear differential equations of the third order
into which it will be possible to introduce instead of coefficients-functions,
universal functions p...(M), ¢...(n), and 7...(n), by means of the following
linear combinations:

Fii=Bp+v 49
2 2
F12:BIP11+62P2+ Bivi EatY19,1Y29

when n=1, and:

2 2 2 2 2
Fo=0,p, 8P +B,v 8, #7549, (t1 4
2 272 2 222 2 22
when n=1/2.

The boundary conditions will be:
p...0)=p ... (0)=p ...(0)=0
g...(0)=q"...(0)=q ...(0)=0
t...(0)=t"...(0)=t"...(0)=0,
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The equations themselves for the universal functions as well as the expres-
sions for the remaining cocfficients of the series used for the new principal
function will not be shown here bec.use of lack of space.

It is possible to derive and to solve in the same way the equations for
remaining coefficients of the series (3). If only the first two terms are taken
into account, then the expressizns for the skin friction and for the displace-
ment area will be:

()W 1 g 0y iR, (50
ruv A GRG0

A AE [ (B)—A )7, @)

TFo

‘where:
n0(8) = lim [n—F, (¢, W}, &)= lim F (& 7)

fi—>% n—

§ 3 — SOLUTION OF THE PROBLEM FOR THE CASE WHEN S (xX)>re(x)

If for some values of x, i.e. £, A(§)>1, then the solution of the equa-
tion (2) cannot be sought in the form of the series (3), but we must seek
a solution in the form of certain asymptotic series in terms of the character-
istic parameter A (£). It is evident that we shall be able, regardless of the form
of the asymptotic series involved, to assume for the first, L. e. the leading,
term F, (&, m) than it represents a function of % only, and thus obtain the
following differential equation:

(7N nFy +Fo =0
for which the boundary conditions are:
F,(0)=F(0)=0, Fo(o0)=1.
The general solution of this equation is:
Fo(n)=C+Dlnn

where C and D are the constants of integration. Hence, it is clear that these
boundary conditions cannnot be fulfiled. Therefore, the equation (7) cannot
be solved with appropriate universally formulated boundary conditions, and
the solution of (2) cannot be sought in the form of any asymptotic series in
terms of the characteristic parameter. The reason for non-existence of the
solution in this form is the universal formulation of the boundary conditions,
which brings forth the unlimitedness of solution both on the surfzce of the
body and in the infinity.

Therefore, in case when A (£)>1, the transformation of the basic equa-
tions of the boundary layer will be carried out in an entirely different way,
in which instead of the variable y, use will be made of the variable r =r, (x) + ¥,
which leeds to a non-universal formulation of the internal boundary condition.
If the basic equations (1) are written in terms of variables x and r, we shall
obtain:

1
uux+vu,=UU'+v<u,,+fu,>
r

(ru)x+ (rv)v =0
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with the boundary conditions:
for r=ry(x) u=y=0
for r—oo u—U (x).
Now, we shall transform these equations by introducing new variables
£ and ¢, and a n=w dimensionless stream function W (% o) in the following

manner:
&

1 2
E:———fUrgdx, a0
v 1?2 A2(E) rg
0
AZ

$(x, r) =~2(—E) Urs W&, o).
Hence, the transformed equation of the boundary layer will be:
(8) (PW:prp;oJf{l+[1+Y(E)]W}Ww"‘B(E)(l_Wé):

=28 (W, Weo— We Weo)
with the non-universally formulated boundary conditions:

= 1 -
A% (E)

for ¢— W,—1.

for o

W=W,=0

The solution of this equation will be sought in the form of an asymp-
totic series in terms of what for the time being will be an arbitrary function
of the characteristic parameter f(A):

: L WG9 W.Go,

For the coefficients of this series we shall obtain a recursive system of diffe-
rential equations involving principal functions B (£) and v(&). The solutions
of these functions should be then sought in form of series in terms of €, with
coefricients-functions of ¢, while the form of these series would depend upon
the form of the corresponding series used for the principal function. It is
little probable that with ring-like bodies of revolution A(§)>1 for a certain &,
therefore, in future we shall restrict ourselves only to solid bodies of revolu-
tion. With the latter (§ 2), n=1/2, B,=1/2, and Yo=—1/2; thus, the series
for the coefficients of the series (9) will have the following form:

(10) Wil o) =3 Ws @5, i=0,1,2, ...
)

while the expression fo: the longitudinal projection of velocity will be:

=W

(11) u -
[ P v
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When solving the problem of a flow past a circular cylinder, Glauert-
-Lighthill [6], as well as Stewartson [7], have found that the longitudinal projecc-
tion of velocity in the vicinity of the surface of the cylinder is proportional to
the logarithm of the distance from the cylinder axis. Now, we shall assume here
that the longitudinal projection of velocity is proportional to the logarithm
of distance from ths axis of a body also in case of a flow past a body of
an arbitrary shape. If this assumption is justified, it will mean that each of
the coefficients-functions of the series (10) for small values of the variable ¢
will have to bchave in the following manner:

Wi@~C;+Diing  (i,j=0,1,2,..)
7 2 3
where C j and ‘D ; are arbitrary constants. On the surface of the body itself,
7 I3
that is for ¢ =1/A% we shall have:

(12) W' (1/A2)=C; —2D; InA.
l? l? 12_
If now it is wished to fulfil the internal boundary condition: W,=0,
for ¢ =1/A% and thenc: to obtain the cquations for determination of cons-

tants C; and D ;, then it is obvious that the up-till-now arbitrary function
12 l"

f(A) must have the followmg form: f(A)=InA. The fulfilment of the above
boundary conditions rcsults in:

J
- (C., 2D lnA)ET
'3 ‘7
i, j=0 ln’ A
whence by comparison of coefficients of terms of the same order of InA we
obtain:

-0

1
Dy—2D 1 92—2Dy&- - =0
2

z(c,j—zp ,.>z"
o\ 'z i+

Since the equations thus obtained must be satisfied for every £, it is obvious
that we must have:

[SIRN

0, i=0,1,2,...

13 i, j=0, 1, 2,...).
(13) c —ap ¢ )

. J 0
’—2— i+1, P

From the transformed equation (8) of the boundary layer the following
equations for the first two coefficients of the series (9) can be obtaincd:

(14 O W oo+ {1+ 11+ 7)E] Wl Wy + B (E) (1 —Wo,) =
=2 E (Wow Woicp_Woi WOW)
(15) (PWl@ww+{1+2EW02+[1+Y(‘£)]W0} quocp_zaqu:Wliqo_
_2[B(g)W0@+EWoE:p] 14:"'25 099 1i+[1+Y(£)]W0<p;:W1:0‘
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In view of the fact that the internal boundary layer for W, has already
been fulfilled by the equations (13), the remaining conditions for coefficients
Wo(E, @) and W, (&, o), will be:

for ¢=1/A2 Wy=W, =0
for ¢—> o Wie—1, W, ,—0

the first of which can be replaccd by an approximate value:
for ¢—0 W,—0, W,—0

because here, in this way for large values of the characteristic parameter,
which are dealt with at present, we make a smaller error than if we take
even an arbitrary large number of terms of the series (9).

From (14), we shall obtain for the first terms of the series (10), when
i=0, as follows:

1224 1 1 l 7
(16) ¢W00+(1+7W00) Weot- (1=Wef) =0
with the boundary conditions:

for ¢—0 Weo—0, Woo~Cy,

for ¢—>o Woo— 1

where Cy, is an arbitrary constant. The solution of this equation in the vici-
nity of the point ¢=0 will be sought in the form of the following power
series:

W (@)= z hy. <Pk-
k=0

By substitution in the equation mentioned above and by applying the first
two boundary conditions, we shall have:

ho=0, h;=Cyy, hy=(Coo— 1)/4, hy=Cyo h,/12, . ..

It should bc noted that for a difinite Cg, it is possitle to work out all the
coefficients of the series regardlcss of the fact whether the boundary condition
is fulfilled or not! It cannot be expccted, of course, that this boundary con-
dition will be automatically fulfillcd for any Cg,; thus, the conclusion is na-
turally reachcd that (16) has no soiution fcr any value of Cpo- Therefore, it
is obvious that thc boundary cond'tion will be fulfillcd in the infinity if
Co=1. All cocff.cients /. will thcn vanish fcr k>>2, and the solution of (16)
will be very simple, indeed:

Woo (¢) = 9.
Now, the equation for the sccond term of the scries (10) for i =0 will be:
(17) oW +(1+3) W' —2w -0
07 2] oy 07

with the boundary conditions:

for -0 W >0, W ~C,
) oy 07
for ¢—>o W11—>0.

o7
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The general solution of this equation is:

W i@=M e o g2+ N e ™G5, 15 0/2)
2 2 2

where @ (5, 1; 9/2) and G (5, 1; ¢/2) are confluent hypergeometric functions

of the first and second kind, respectively. If we take into account the asymp-

totic behaviou: of these functions for ¢ —0 and ¢ —oo, then the application

of the external boundary condition will result in M01 =0, while the applica-
2

tion of the internal boundary condition will result in:

N
00—
oV O—2¢ M+ In @DI~C,

where I'(x) are the so-called gamma functions, and ¢ (x) the logarithmic
derivative of the gamma function. It is obvious tha we must have simulta-
neously: N , =0 and C | =0; thus, the equation (17) has only a trivial
o7 03
solution:
W (9)=0.
03

It can be shown that equations for other coefficients of the series (10) for
i=0, too, have only trivial solutions. Therefore, the first term of the series
(9) is reduced to:

(18) Wo (&, 9) =Wy (@) =o-

Also, we shall have: C =0, or, if (13) is taken into consideration: D ; =0,
o7 12

j=1, 2,3, ... Since Cyo=1, D;y=1/2.

If (18) is taken into account, then thc equation (15) used for the
evaluation of W, (£, @) is greatly simplified:

(19) ¢ Wlw:pcp+{1 L+ v @l o} Wige—2 g W1Z¢_2B(£) Wie=0.

If the solution is assumed to be in the form of the series (10) with i=1,
then for the first term of the series we shall have the following equation:

rre

(20) o Wis + (1 DW= Wio=0
with the boundary conditions:
. 1
for CP-—>0 W]0—>, WIONCIO-FE‘ lncp

for ¢— W;0—>0.
The general solution is:

Wio=Me o2 ® 3, 1; ¢/2)+ Nyye=2G (3, 1; ¢/2)
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where due to the external boundary solution, we must have M,,=0, while
the internal boundary condition will result in:

N _ , - 1
—r—(éy[¢(3) 24 (1) +In(e/2)]~Cyp + 210<P

‘whence by equation the free terms and those with lng and by taking into
consideration the values for the corresponding gamma functions and the'r
logarithmic derivatives we have:

Np=—1, Clo=%(3+2y—21n2)

where v=0.5772 ... is Euler’s constant.
Hence the solution of the equation (20) will finally be:

0]
1) Wo(@)=— [e*’G(3, 1; ¢/2)de.
[}

Now, we can set up an equation for the determination of coefficients
W (o)
)
oW (1 +i’i> W2 W =281 Wio—vi 0 Wi
17 2/ 13 1z 2 2
or, if we take into account (21), the rules for derivation of the confluent
hypergeometric functions and certain recurrence relations fulfilled by them

([9], page 507):

oW’ +(1 +i) w'i—2w’, =—2(ﬁl—yl)e—w2G(3, 1; 9/2)—
13 2/ 13 17 77
—y,e7%2G (2, 1; ¢/2)
2
with boundary conditions:

for ¢—0 w

1

-0, W' ~C
15 L

2 13 2

1

for ¢@->o w',—0.
Iz
The general solution of this equation is:

Wi@=M 05, 159/D+N 176G, Lo/)+
2 2 2

+2<BI~Y1)6"‘°’2 G@3, 1; CP/2)+§Y1 e~*2 G (2, 1; ¢/2).
) 7

The constants M | and N | can be cvaluatcd in thc same way as those in
1~ 1

2 2

case of the equation (20). We shall obtain:
M =0, N =—«8(3(31—Y1>

17 2 2

13 2
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where must be:

i
C :—~(21 8, +5yl)
ty 360 5 7

In exactly the same way, it is possible to derive and to solve in a closed
form the equations for the remaining cocfficients of the series (10) when i=1,
and also when i=2, 3, ... The calculations, however, rapidly become very
complicated, and the use of an electronic computer is greatly warranted for
practical reasons.

The expression for the skin friction becomes:

1
Dzo*Dz,L£7+D21£+ S

2 .
Do + InA T

(X)) T (x) 1
2uU(x) InA

where:
D=1/2, D,,=C,,/2, D2 ; :Cl 2.

2 2

The first two terms of the series (9) will give the same value for both
the displaccment area and the momentum defect area. This value is:
4 4,  A@E

nrg_ircrg In A (§)

Thus, a solution is obtained of the basic equations of the boundary
layer for the case of great values of the characteristic parameter A (£) for an
arbitrary shape of the body and an arbitrary distribution of the main stream
velocity. The assumption on the logarithmic behaviour of the velocity profile
in the vicinity of the body in such a general case of a flow is shown, there-
fore, to be quite justified.

Wl (E’ ox© )

§ 4 — NUMERICAL EXAMPLES

Now, we propose to show somz numerical results for cases in which
the d'fficulties of numerical nature are the least. Those are certainly the cases
in which the coefficients of the series (9), as well as those of the series (3)
arc reduced to being functions only of the variables ¢ or 7, respectively. In
the author’s paper [8] already mentioned it was shown that in this case it is
necessary to have:

B(E)=By=const. and v (E)=-+,=const.
and that these conditions will be fulfilled when:
(22) U (x) = cx™, ry(x)=ax" (a, ¢>0).

The constants B, and vy,, then have the following values:

2m m+2n—1
(23) Bo=—— S Yo= .
m+2n+1 m+2n+1

In this case, the equation for the first term of the series (3) is reduced
to the well known Falkner-Skan [10] equation, while (4) is reduced to
(6) which is numerically integrated for values B,=0.18; —0.14; 0 and 0.5,

3 Publications de Institut Mathématique
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when n=0 (a circular cylinder), or when n=0.5 (a body having approximately
the form of a paraboloid of revolution) and when n=1 (a cone). Thus, we
have analyzed the transverse curvature effect of the body in an interval in
which A(¥)<1, and now we proceed to obtain the corresponding numerical
results for the interval A(£)>1.

If the main stream velocity and the radius of the body cross section
are given in the form of (22), then the series (9) will become:

W o -Wole) P
InA
where we shall have W, (p)=¢, while W, (¢) will satisfy the equation:
(24) oW +[1+(1+v) gl W1—28,W1=0
with the boundary conditions:
for ¢—0 W,—0, Wi~C, +%ln(p

for @—o W10
this equation being obtainable from (19) provided we take into account that

ngEO.
That substitution of variables:

(1+y)9=C and Wi(p)=e*@ ()

will result in the equation (24) being reduced to a confluent hypergeometric
equation:
W'+1-0)d—2m+1)P=0

the general solution of which is:
Q) =MOQ2m+1, 1; )+ NG2m+1, 1; ¥)

when ms#—1/2, —1, —3/2, ...

It has already been shown [8] that practically only values m>—1/2 aie
to be considered, so it can be taken that the solution is valid for every m.
The general solution of the equation (24) will be:

Wi@)=Me<®2m+1, I; D+ Ne*G2m+1, 1; §)

where;
2

m+2n+1-<P'

The application of the external boundary condition results in the fact
that there must be M =0, while the internal boundary condition will produce:

“I’(2m—|-l)
2

N=

1
C=—dCm+D+2y+In—-—
' 2[ m+2n+1
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thus, the final solution of (24) will be:

2
m—2n+41 @

1
Wl(@):_wdfn;f‘(szrl) f etG2m+, 1; DdL.
0

If this solution is known, then the expressions for the skin friction and the
characteristic surfaces of the boundary layer will be:

()T, () _ 1 @+_mﬁ)
20U WmAE \ ' InAE)
A A BE)
nre nr(z) InA (E) Wi(e)

where: D, =1/2 and D,=C,/2.

In a special case considered by Glaueri-Lighthill [6], m=n=0 and,
hence the expression for the skin friction becomes:

ar, 2 v+In2
BT BN TT
te In In
ca? ca?

If this expression is compared with the corresponding expression obtained
by Glauert-Lighthill, it will be noted that there exists a slight difference, but the
numerical differences are negligible.

The values C, and W, (e0) in cases considered are shown in Table 1.

Table 1
B,=0.5 By=0 B8,— —0.14 By —0.18
| n G |=Wi)| G =) G )] 6 [=Wi(e)
0.870 0.202 0.635 0.251 0.489 0.263 0.437 0.265
0.5 0.742 0.312 0.289 0.503 |—0.038 ‘ 0.575 |—0.139 0.624
‘ 1 0.691 0.338 0.086 0.755 |—0.435 | 1.119  |—0.562 1.373

On the grounds of these values, we have shown in Fig. 1 the diagrams
of the resistance per unit length of the body, F,=2nr,(x)7,(x) and of the
displacement area for the case of flow past a circular cylinder (n=0), when
By=0 and B,= —0.18.

The solid curve shows the solutions obtained by series (3) and (9). The
convergency of both these series, of course, stops in an interval in which
A(E)~1 (IgA (E)~0). The solution for this interval was obtained by interpo-
lation (— - —+—.— ). The broken curve represents the deviation which would
arise if in this interval we use the results obtained by the series (3) and (9),
while the curve shown in dots ....... rcpresents results which would be

3*
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obtained by taking into account only the first term of the series (3) which,
as we have already pointed out, satifies the Falkner-Skan [10] equation and
corresponds to the problem in which the transverse curvature effect has been
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neglected. In such a logarithmic diagram this solution is a straight line and
it is quite clear that this line greatly departs in the intervals A(¥)a1 and
A(E)>1, as was to be expected, from the solution obtained in this paper.
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