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1. Introduction.

1.1. At several opportunities (cf. the bibliography at the end of the
article; in particular see my memory [8] written in 1937) one was lead to
consider trees A=A, having the following properties:

1. The height YA of A is an initial ordinal number w,;

2. Every row Rz A:={x; xCA, type of A(-, x)=%&} is of a cardinality
<kew, and sup:kR; A=k o, (for an ordinal v we define v~ to be v—1 or v,
according as v—1 exists or does not exist; in particular 0~ =0).

3. The cardinality of every chain in A is <kA. 0

4, For every x < A the height v [a] of all the points of A each of which is
comparable to a equals v A.

5. For every xCA the node |x| :={x; xCA, A(-, x)=A(-, a)} has 1
or kv x points, according as (yx)~=+yx or (Yx)"<yx; here yx is the ordinal
satisfying xR, A.

1.2. If w, is cofinal to w,, 4, does not exist; 4, does exist (N. Aronszajn,
v. [5], p. 96) as well as A, for every ordinal «; in this paper we shall prove
it without continuum hypothesis; the proof is analogous as it was done for
the case «a=0 in P. Kurepa [8] and is based purely on order considerations
(cf. also [1], [15D).

The problem of the existence of A4, for inaccessible v>«w, remains open.

1.3. In the section 2 we define an ordered set H= R¥; the properties
of R* and of o R shall yield in § 3 a requested set A4,+,. In § 5 we shall
prove that every 4,,, obtained in § 4 contains an antichain of cardinality
kA,., — a property closely connected with the author’s ramification hypo-
thesis (cf. [6], [12]).

1. The set D,. Let w, be any initial ordinal number; we denote by D,
the ordered set

{ooey =0 ooy, =2, —1,0, 1,2, oo, o . (x<w,).

The order type of D, equals oy +w,; 1. e. (D,, <) is coinitial with wy
and cofinal with ®,. The members of D, might be called w,-integers.
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2. The sets R, R(<,).

2.1. Let R¥ be the set of all finite sequences of members of D,.

2.2. Set H=(R’, <,). We order R’ by putting for members g=
=(ay, ay...a,), b=(by, b;, ..., bg) of R* that a<(,b means either that a
is an initial portion of b (i. e. a<<B and a;=b; for i<a) or, that a;=b,
(i< @), a,<b,, where 9=¢(a, b) is the first index at which the sequences
a, b differ (natural ordering of complexes). One sees that

(2.1.) H=(R, <,)
is a totally ordered set.
2.3. The cardinality of H equals ko,, i. e. kR* =¥,.
As a matter of fact, kR* =N, + N2+ 83+ . .. =N AN =N

2.4. Theorem (i). The set H=(R', <,) is totally ordered and dense.

(i) The ordered set H is order-imbeddable into every of its intervals I,
even so that 1 contains a subinterval similar with H ( quasihomogeneity of R>).

(iii) Every gap X|Y of (R, <,) is of the type (wy, ws) i. e. X is cofi-
nal to oy, and Y=R\Y is coinitial to wo. Every interval of H contains gaps,
i. e. the gaps of H are everywhere dense in (2.1).

(IV) Every ordinal number «, a<<w,., is imbeddable into H: Wyy, IS the
first ordinal which is not imbeddable into H.

Proof. (1) For a=(ay, a,, ..., a,)C(2.1), the set S=R,(-, a) of all
predecessors of a has no terminating member; in fact, let us consider a,ED,;
if a, has in D, its immediate predecessor a,, i. e. if a, is isolated ordinal,
then the set S is cofinal with the w,-sequence of all sequences of the form
(@p4a,...a,.,a,w/’), ’ running through D,; if o, —a, (i. e. if a, is an ordi-
nal of the second kind) and equaling £w, then S is cofinal with the a,-
-sequence of members (aya, ... a,_,B)sqs, By dual considerations one proves
that ¢ has no immediate follower.

Ad (ii). Let a=(aya,...a,), b=(by, by, ..., b)ER" and a<<,b. Then
either a is an initial section of b or there is the first index p<<w such that
a,<b, (thus a,#b,) and a;=b; for every i<¢. In the first case, m<n; let c,
d be two members of D, such that c<<d<b,,,; then the mapping x< R¥—»x' =
=acx is a requested order imbedding of (2.1) into (R, <,)(a, b), because
a<.x'<,b.

In the second case, the mapping x < R*—ax furnishes such an imbedding.
In both cases, the previous isomorphism carries R® onto some subinterval
of RY(a, b).

Ad (iii). Let X|Y be a section of (2.1), i. e. X is a non void initial
portion of (2.1) and Y is the remainder (2.1)\\X; suppose X|Y be a gap.
Let b,=sup & where (£)<X; then by<w, because the set of all the &) E<w,)
is cofinal with (2.1); let b,=sup £ with (@4, §)EX; if by=w,, then (a,+ 1) is
the fiist member of Y. ]

If b<w, we consider b,=sup% with (by, b,, B)E X etc. If for some
n<<w, we have b,=w,, then (b, b,...b,_,+1) is the first member of Y; if
ap,<<w, for every n<<w,, then X is cofinal with the strictly increasing wy-sequence

(b)), (b by), (byby by, ...

and consequently has the type of .
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Dual considerations show that Y is coinitial with wg. As a matter of
fact, let c¢,=inf &, where (§)C Y. Then —w,< ¢, because the set (2.1) is coini-
tial with the set of all sequences (£)(£> —w,). Let ¢, =inf& where (c,£)C Y;

if ¢,=—uw,, then (—1+¢y) is the last member of X. If ¢,> —aw,, we consider
¢, =inf &, with (¢ ¢, £)E Y, etc.
Since H has gaps, every interval of H has gaps too — consequence of

the statement (ii).

Ad (iV). Every ordinal number o, a<w,;, is imbeddable into (2.1).
We prove it by induction argument. For a<{w,, the fact is obvious: the
mapping a&Jw,~>(®)ER® is such an isomorphism. Let the statement hold
for any «, a<f, where B<w,,,; let us prove it also for o=p; this being
obvious for B=f~+1, let us consider the case 3~=f (B is of second art).
Then, there exists a regular number ., such that for some w,-sequence B; of
ordinals we have

B=2: B (E<ay)-
Now, let b:(E<w,) be any strictly increasing sequence of points of RY; we
imbed every ordinal B; into the open interval R*(bz, b:.,) as some well-
-ordered subset B:; then the union (J;B:(£<w,) is a well-ordered subset of
(2.1) and of type B.

3. The set o,. Let o, or 6 be the system of all well-ordered non void
subsets C (2.1), each of which is bounded; consequently, if a<o,, the number
ya — the ordinal type of @ — is determined as well as the insreasing points

ag (E<vya)

of the set a. The system o, will be ordered by the relation =| meaning ,,70
be an initial segment of .

Of course, the set (o, ==|) is (partially) ordered; moreover, it is ramified
and even o, is a tree.

3.1. Theorem. The ordered set (c,, —!) is such that each of its chains is
a well-ordered set, the cardinal of which is <N, on the other hand

(3.1.1) Y(oy, =)=0y,.

Namely, if C is any chain C (o,, ==|), then (JC is a well-ordered subset of
(2.1) and vice versa: W being any well-ordered bounded subset of (2.1), the
system of non void initial intervals of W yields a chain C(s,, ==|). Finally,
the relation (3.1.1) is an another expression for the statement 2.4. IV

3.2. The set (R, <,). Let
(3.2.1) R or H

denote the totally ordered set obtained from (2.1) by putiing a single element
in every gap of (2.1). Of course, the set (3.2.1) is continuous in the sense
of Dedekind: every section of (3.2.1) is given by a single element of (3.2.1).
Consequently, for every bounded chain CC (3.2.1) the infimum and the
supremum of C relatively to (3.2.1) are well determined points of (3.2.1).

3.3. Function f.
In particular, let
(3.3.1) f(a)= sup x (acay);
x<a
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3.3.1. Lemma. The mapping (3.3.1) is an increasing mapping of o, into
(3.2.1); every 3 points chain of (o,, =|) is mapped onto at least 2 points of
(3.2.1). The system a=l|a’, f(a)=f(a') is equivalent with the statement that
supaC (3.2.1) and a’'\a={sup a}.

3.3.2. Lemma. Let eCo,, B<w,y; then the set f(Rgy(e,-)s) is every-
where dense in the right interval ( f(e), )m.

At first, let B=0; then R,(e,-) is built up of the sets

elJ{x},

x running over the set of all the points of H, each of which is >f(e) or
= f(e), according as ye is limit or isolated ordinal; since then

f(e)=sup (el){x})=x,

the statement is obvious. Let us suppose now that 0<B<w,;, and that
the statement holds true for each £<B; to prove it for £=8. If B—1 exists,
the set fRp ,(e,-); is dense on (f(e,-)g; again, if b is an immediate successor
of e in o, then f(R, (e, )s;) is dense on (f(e),-)y; consequently, the join

Ubf(Ro (ba')c:f(UbRo(b")c:f(RB(e;')c(beRﬁ—-l (e;')c)

is dense on f(e;)y.

If B is a limit number, let B; (E<<¢fB=1) be an increasing sequence of
ordinals —f. Let x be any point of (f(e), )y of character ¢, and x,(n<cfB)

any increasing t-sequence of points of H so that f(e)<<e, sup x,=x and
n<t
sup x, <x, (m<7). The existence of such a chain x, is obvious. Let e°C Rp,

®<n
(e;-)s so that f(e)<<f(e’)<<x, inductively, for each 0<<3<t let us suppose
defined the 3-chain

e* (u<<d)

so that e*C Ry, (6,+), x,<[f(e")<x**+!(1n<<d). Let then e® be an element of
Rgs (e, )s so that et=[e?, (u<3), x5<<f(e®)<xsi,; such one x; exists, since

x'= {J e* is a point of o, inasmuch it is well-ordered and bounded (it is
w<8

located left to x;). Q. E. D. ;
From the last proof we deduce the following.

3.33. Lemma. If a<w,y,, the set fR,o, is everywhere dense on H;

if « is a limit number, then fR,oc, is equal to the set of all the points of H
each of which is of character Cy, &' =cfx.

4. Construction of the requested sets A,,,.

We shall construct a requested tree 4=4,., as a union of some kw, 1
sets Dy (E<o,y).

4.1. To start, let G, be any subset of cardinality N, of H\ H so that
G, be everywhere dense in H; consequently, every member of G, is of a
countable character (cf. 2.4. (iii)). To every xCG, we associate an element
Y(x}ER,0, such that f¢(x)=x and that for x, x'EG,, x#x one has
Y x#¢x". In this way we get the set

D,: =4 G,C R, 0,
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4.2. Let suppose that 0<<B<w,y, and that the sets
Dy, Dy, ..., Dz, ..., E<p)
be constructed so that putting
Sp= U Dg E<B

the following conditions 13—7g hold:

lg Rysg=Dx (E<B)

25 DzC Rei(y4%) 0y (E<P)

3 Yse=0

4 kD=N, (E<P)

5, If £<P, e<Dy and E<{<P, then fR: [e]sB is an everywhere dense
set on H(f(),") B

6 If £<pB, the set fR;sz is everywhere dense on H, B

7¢ For each £<Band x&D, fx is a o (1 + &) — point of H; if e, e’ < D¢
and e#e’, then fe+fe'

4.3. Let us define Dy and sg.;.

4.3.1. If B—<B, let us consider Dy_; let Iz be a set-mapping of Dg,

into H so that for each e=Dg_, the set lze be a subset of cardinality W,
of wq-points of fR,+z(e,-) everywhere dense on it, and that if e7e’, then
the sets lge, Iy €' are disjoint. For each xSge let ¢ (e, x) be an element of
R.plels, such that fe(e, x)=x (the existence of such one ¢ x is obvious).

Then we define
(4.3.1.1.) Dg:=.le (e&Dg_)).
Consequently, fDg=f U.ls(€)=everywhere dense subset of H(f(e),").

4.3.2. Case: B is a limit ordinal. 4.3.2.1. Let By (<7, Tv=cfB) be
any increasing regular sequence of ordinals —@; let [ze for

(4.3.2.1) e Ur<asRoato s

be a disjointed system of sets, so that le be a subset of cardinality N, of
ot-points of fRy 4p [els, €verywhere dense on that set; in particular

(4.3.2.2) kle =%,

To each ordered pair (e, x) with xCla(e) let ¢ (e, x) be an element of
Rg+plels, so that f{ (e, x)=x. The existence of ¢ (e, x) is clear. As a matter
of fact, x being a member in H, let xy({<t) be a strictly increasing sequence
of points of (f(e), )7 tending to x. Let ¢° be a point of D, satisfying
e—|e°, fe<fe°<x,. Inductively, for each 0<{<7 and 0<E<, let € be a
certain point of Dg, succeeding to every e* (w<<£) and satisfying xy < fe*<xzy;
in virtue of conditions 45, 55 the existence of €% is assured. We define,
et=sup e and (e, x)=sup e*. Thence

L<t

E<i
foe x=x

4.3.2.2. The set Dg is defined as comsisting of points ¢ (e, x), x, e
running respectively over (J.I(e) and (4.3.2.1).

In any case, the set Dy is defined.
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4.4. Putting
(4.4.1) Sg+1= 53U Dg

one proves that the condititions 1g,,—7,., are satisfied. The condition lgr,
is satisfied since Rgsp= Ry s, (E<B) and since each e=Dy is preceded by a
single element in every Dy(£<B). As to 2,,,, its verification is immediate.
As to 3p., 1. e. that kDg=N,, it is a consequence of the formula for
D¢ (E<B), that means that ks;=N;. Now, there is a one-to-N,-mapping of a
subset” of sy onto Dg, thus kDp<<kss. N,=N,-N,=N,; since for any E<B
each eCD; is succeeded by N, distinct elements of Dg, the condition 3g,
is fulfilled.

4g+;. The case of an isolated B being resolved by (4.4.1), (4.3.1.1),
let 8 be limit number; x running over /;(e); the condition 4s,, is an imme-
diate cosequence of (4.4.1), (4.3.1.1) and of the assumed density of I; (e).
The condition 5a,, is a consequence of 44, and of the conditions Se (E<P).
Finally, the condition 7., holds true, first, because the points of Dy are
constructed as some (14 @) — points of H and, secondly, because of the
disjointedness of the above sets /y(e) (e variable). Thus the existence of Dy
and s, is proved for every B, B<w,;, and the conditions 13—75 hold true
for every B<aw,y,.

4.5. Putting
Aysy = Ug Dy (B<‘°v+1)

one sees that conditions 1 w,,,—6 w,,, hold true for writing A,., instead of
So,. - In particular A4,,, is a tree so that

Y Av+| =0y
kRg Av+1:; Nv (B<(’~)v+])
kr Av+l = NV’

moreover, for any e=A,., the set (e, -), satisfies the same last three con-
ditions.

4.6. Total order-extension of 4,,, to become /w,,, or the partial order
destroying in Jw,,; to become 4,,,.

4.6.1. The mapping f(e) (eC 4) is a strongly increasing mapping of A
into H. Consequently, f is biunique in every chain of 4. According to the
previous construction, f is biunique in every set RgA(B<w,1,). Thus, if the
sets Ry A(B<w,.;) are pairwise disjoint, f is a biunique correspondence
between A4 and the subset f4 of H. In such a case, using the mapping f,
we can proceed either to destroy partially the order in the chain fA and get
an ordered set similar to A, or to transfer the total order of fA onto the
set 4 enlarging so the given partial order of A. Namely, if e, ¢’ are any two
incomparable points of A, we can declare incomparable also the corresponding
points fe, fe’ in fA; fA becomes partially ordered and similar to 4. And vice
versa, if x, x' are any two points of f4, we can introduce an order <’ into
A by the procedure that x<x' in f4 be equivalent to fix<'f~tx" in A.

D Viz. of Dg—1 and U Dpg, respectively, according as B in isolated or limit number.
c<ef B N
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4.6.2. Partial desordonning of I(w,.,) to get a set A,,,. Any set A4,,,
has §,;, as its cardinality. We can do an extension of order of 4 to yield
a total order of type w,, of A,,,. Namely, as kRgA=¥,, let

af E<aw)

be an w,-enumeration and at the same time an ordering of the set Rg A4, so
that in the new ordering ag precedes at, if and only if £<& <w,. Defining

aggag: if and only if either BB or B=08, E<E one gets the required
total extension of (4, =<).
Putting

g@d=0,ptEB<w,,, E<w)

g is a biunique isomorphic mapping of 4,,, onto I(w,,,). This isomorphism
enables us to destroy partially the total order in 7(w,;,) to get in it, as a
step of previous ordination of / the partial order of A.D

4.6.3. It is not easy to have a simple picture how such an desordonning
of I(w,;,) takes place. However, we can realize it in the following manner:
let () (B<w,y;) be any uniform mapping of I(w,.,) into H so that for
each § the mapping h be biunique in [w,B, o,(B+ 1)) and that the corres-
ponding set

(4.6.3.1) hloyB, o, (B+1))

be everywhere dense in H and be composed of very «(l+p) — points of H;
then the set (4.6.3.1) can be chosen to serve as the set /Dy in the construc-
tion in § 4.3: it is sufficient to consider any partition Py of (4.6.3.1) into
N, pairwise disjoint sets, each of which is everywhere dense, establish a
biunique correspondence 3 between E; and Pz and for any eCE put
I(e)=1g(e). According as B is isolated or limit number, the set E; means
Dy or Ug<:Dg, in previous notations. On the other hand, the existence of
such mappings h is easy to establish. Namely, let us consider a bounded
w,-sequence a in H; then for each {<v the element sup;cw, @z is a well-

-determined w;-point of H; thus, there are we-points in H for each {<{v. In
virtue of the quasihomogeneity of H that means that in each interval of H
there are wg-points too; thus, for each B<w,., the w(1+B) — points are
everywhere dense. It is then sufficient to consider a set S of power N, of
oy (1 +B) — points everywhere dense, decompose it into a w,-system of dis-
joint sets S%, B'<w,), each of which is everywhere dense and to consider
the sets

S§ (<o, B<w).
They are to be used as sets fD; in §§ 4.1.—4.3.

) The precise definition of that idea is the following one [7]: let (E,, <,)(E,, <,) be
two ordered sets (in general, they are only partially ordered); of course, one can have E, =E,;
we say that the order of (E; <) is at least equal to the order (E,; <,), symbolically
t(E; <)<I(E,, <, if there is a one-to one mapping f of E, into E, so that every chain
C of (E; <,) is mapped onto a similar chain of (E,; <,), no matter what happers with
subsets of E, that are no chains. We say that the ramification (or disorder) in (E,, <) is at
least equal to the ramification (or disorder) of (E,; <,), symbolically r (E,, <)<r(E,, <,)
if there is a one-to-one mapping of E, into E, so that if x, y© E, and x<,y, x>, y, x||<, ¥
then in (B, <;) respectively f(X)<,f (), fF(X)>,f (), fD<, () i. e if (E; <)) is
similar with a subset of (E,; <,).
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5. Normality of the preceding set A,.,.

Theorem. The set A,,, of the foregoing construction contains a set of
kA, ., = N,+, pairwise incomparable points.

To see it (cf. Kurepa [10]) let r& H and a— 4; let us define ¢ (7, a) so that:

.1 Y(r, ay=—1 if a non €a
Y, a)=8 if rCa and
just ag=r (let us remind that a is a well-ordered set C H). For any T Co H let
(5.2) Y(r, T)=supecr (1, a).
There is a point ry&H so that
(5.3) $(ry, A=0ny;.

In opposite case, one should have { (r; A)<w,.,(rEH), thus §<o,,,,
with 8=sup,ca{ (r; A), because kH=¥N,. Now, since yA=w,;, and S<w,,,
there is an element a& Ry, A; the point asy, of H should satisfy ¢ (a5,,a)>
>3+2>3, what is a nonsense. Thus the existence of an r, satisfying (5.3)
is assured.

Now, let us construct a w,;-sequence

(5.4) a’, d, ..., ..., (E<o,y)
of points of 4, so that ry&a*(§<w,,,) and that for each £ one has
(5.5) ¢ (rg, a%)>supr<zd(ry, av).

Because of (5.3) the existence of (5.4) is inductively provable. Since, each a®
is a well-ordered subset of H containing r, and since (5.5) holds, the elements
(5.4) are pairwise incomparable: no one is an initial interval of another one
Q. E. D.
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