ON FIRST INTEGRALS OF THE EQUATIONS OF MOTION OF THE FORM $\frac{dx^i}{dt} = a^{ij} \frac{\partial \Phi}{\partial x^j}$

Lazar Rusov

(Communicated October 16, 1963)

The differential equations of geodesics in the Riemannian space \overline{V}_n with the action line-element

(1)
$$ds^2 = g_{ij} dx^i dx^j, \qquad (i, j = 1, 2, \ldots, n)$$

where g_{ij} is the metric tensor of the space \overline{V}_n , admit a complete system of *n*-first linear integrals [1], in the form of

(2)
$$\frac{dx^{i}}{ds} = g^{ij} \frac{\partial \Phi}{\partial x^{j}}, \qquad (i, j = 1, 2, \ldots, n)$$

provided the Riemannian space \overline{V}_n admits the solutions

(3)
$$\Phi = \Phi(x^1, x^2, \ldots, x^n; C_1, C_2, \ldots, C_n),$$

of the partial differential equation

(4)
$$g^{ij} \frac{\partial \Phi}{\partial x^i} \frac{\partial \Phi}{\partial x^j} = 1.$$

Application of this theorem to the conservative systems is obvious. If a_{ij} is the fundamentaltens or corresponding to the kinematic line-element for a material system with the kinetic energy $T = \frac{1}{2} a_{ij} \dot{x}^i \dot{x}^j$, and if E is the total and V the potential energy of this system, so that $g_{ij} = 2(E - V) a_{ij}$, [2] represents the action line-element for this system, it follows directly from (2) that

$$\frac{dx^{i}}{dt} = a^{ij} \frac{\partial \Phi}{\partial x^{j}}.$$

The question now is whether the differential equations of motion of a scleronomic non-conservative system in the Riemannian space V_n admit first integrals which are linear in terms of the generalized velocities of the form (5). In order to answer this question, we shall consider a scleronomic holonomic non-conservative system which is acted upon by some given forces which are functions of positions only. Let x^i be generalized coordinates of such a system,

for which we assume that it has n-degrees of freedom. The differential equations of motion of the scleronomic non-concervative system under consideration can be taken to represents the motion of a particle in the Riemannian space V_n and are as follows:

(6)
$$\frac{d^2 x^i}{dt^2} + \left\{ \begin{array}{c} i \\ j \end{array} \right\} \frac{dx^j}{dt} \frac{dx^k}{dt} = Q^i(x),$$

where $\begin{cases} i \\ j \\ k \end{cases}$ are Christoffel's symbols of the second kind formulated with respect to the metric tensor a_{ij} of the space V_n which is defined from the relation

(7)
$$ds^2 = 2 T dt^2 = a_{ij} dx^i dx^j \qquad (i, j = 1, 2, ..., n).$$

In order to see whether the differential equations of the scleronomic non-conservative system (6) in the Riemannian space V_n admit first integrals of the form (5), we shall assume that the generalized velocities $T^i = \frac{dx^i}{dx^i}$,

(6) can be given as

(8)
$$\frac{dx^{i}}{dt} = T^{i} = a^{ij} \frac{\partial \Phi}{\partial x^{j}}.$$

The substitution of (8) in (6) will result in

(9)
$$\frac{d}{dt} T^i + \left\{ \begin{matrix} i \\ j \end{matrix} \right\} T^j T^k = Q^i(x).$$

When the differentiation indicated in (9) is carried out, and by taking into consideration (8), it follows that

(10)
$$a^{il} a^{mn} \frac{\partial^2 \Phi}{\partial x^l \partial x^n} \frac{\partial \Phi}{\partial x^m} + \frac{\partial \Phi}{\partial x^m} \frac{\partial \Phi}{\partial x^n} a^{pm} \left(\frac{\partial a^{in}}{\partial x^p} + a^{kn} \begin{Bmatrix} i \\ p \end{Bmatrix} \right) = Q^i(x).$$

If we now start from the fact that the covariant derivative of the metric tensor a^{in} in the Riemannian space V_n is equal to zero, i. e.,

(11)
$$\nabla_{p} a^{in} = \frac{\partial a^{in}}{\partial x^{p}} + a^{kn} \begin{Bmatrix} i \\ j k \end{Bmatrix} + a^{ik} \begin{Bmatrix} n \\ p k \end{Bmatrix} = 0,$$

(where the symbol ∇ denotes a covariant derivative), then the expression in brackets in (10) can be replaced with

$$-a^{ik} \begin{Bmatrix} n \\ p & k \end{Bmatrix}$$

which follows from (11). When this substitution is made, the equations (10) become

(12)
$$a^{il} a^{pm} \frac{\partial^2 \Phi}{\partial x^l \partial x^p} \frac{\partial \Phi}{\partial x^m} - \begin{Bmatrix} n \\ p \end{Bmatrix} \frac{\partial \Phi}{\partial x^m} \frac{\partial \Phi}{\partial x^n} a^{pm} a^{il} = Q^i(x)$$

or

(13)
$$a^{il} a^{pm} \frac{\partial \Phi}{\partial x^m} \left(\frac{\partial}{\partial x^l} \frac{\partial \Phi}{\partial x^p} - \frac{\partial \Phi}{\partial x^n} \begin{Bmatrix} n \\ p & l \end{Bmatrix} \right) = Q^i(x).$$

In (13), the expression in brackets represents the covariant derivative of the vector $\frac{\partial \Phi}{\partial x^p}$, thus the equations (13) can be written as follows

(14)
$$a^{pm} \frac{\partial \Phi}{\partial x^m} \nabla_k \frac{\partial \Phi}{\partial x^p} = Q_k(x),$$

which leads to

(15)
$$\nabla_{k} \left(a^{pm} \frac{\partial \Phi}{\partial x^{p}} \frac{\partial \Phi}{\partial x^{m}} \right) = 2 Q_{k}(x).$$

Since the expression in brackets in (15) is as scalar quantity, the covariant derivative is equal to the partial derivative, and the equations (15) can now be written as

(16)
$$\frac{\partial}{\partial x^{k}} \left(a^{pm} \frac{\partial \Phi}{\partial x^{p}} \frac{\partial \Phi}{\partial x^{m}} \right) = 2 Q_{k}(x),$$

which, in view (7), leads us to the following expression

$$\frac{\partial}{\partial x^k} T = Q_k(x).$$

Since generalized forces, however, are not conservative, then

$$Q_k(x) \neq \frac{\partial U}{\partial x^k}$$

where U — is the force function, and thus, the relation (17) is impossible. Hence, we have the following theorem:

The scleronomic non-conservative system, the differential equations of motion of which are (6), do not admit first integrals of the form (5) in the Riemannian space V_n .

REFERENCES

[1] Lazar Rusov, On some first integrals of equations of motion, Publ. Inst. Math. Beograd 5 (19), 1965.

[2] Tatomir Anđelić, *Tenzorski račun (Tensor Calculus*), II izd. Naučna knjiga, Beograd 1967.