A NOTE ON A THEOREM OF BOAS

S. M. Mazhar

(Received May 6, 1967)

1. Let $\lambda = (\lambda_{n,k})$ be a triangular matrix of real numbers, then (λ) mean of a sequence $\{s_n\}$ is given by

$$t_n = \sum_{k=0}^n \lambda_{n,k} \, s_k \, .$$

If we take

$$\lambda_{n,k} = \frac{A_{n-k}^{\alpha-1}}{A_n^{\alpha}}, \quad \alpha > -1, \quad A_n^{\alpha} = \binom{n+\alpha}{\alpha},$$

then the sequence t_n becomes σ_n^{α} , the *n*-th Cesàro mean of order α of the sequence $\{s_n\}$.

2. Generalizing a result of Tomić [2], Boas [1] has recently obtained the following theorem.

Theorem A. If the series $\sum b_n \sin nx$ has $b_n \geqslant -\lambda_n$, where λ_n are the Fourier-Stieltjes sine coefficients of a function of bounded variation, and if

(2.1)
$$\int_{0}^{\varepsilon} |\sigma_{n}^{1}(x)| dx = O(1),$$

for some $\varepsilon > 0$, then the series $\sum b_n/n < \infty$.

The object of this note is to show that this theorem remains true even if we replace σ_n^1 in (2.1) by the (λ) mean of the sequence of partial sums of $\sum b_n \sin nx$, where $\lambda_{n,k}$ satisfies certain conditions.

3. Let

(3.1)
$$\lambda_{n,k} > 0$$
, $\sum_{k=0}^{n} \lambda_{n,k} < C$ and $\sum_{\lfloor n/2 \rfloor}^{n} \lambda_{n,k} \ge \delta > 0$ for sufficiently large n .

Following the lines of proof of Boas [1] we have

$$\left| \sum_{k=1}^{n} \left(\sum_{\mu=k}^{n} \lambda_{n,\mu} \right) b_{k} \left(k^{-1} + O\left(k^{-2} \right) \right) \right| < C,$$

where C is a constant.

Let $b_n \ge 0$. If m is so large that the term $O(k^{-2})$ is less than $k^{-1}/2$ for $k \ge m$, then for n > 2m we have

$$\frac{\delta}{2} \sum_{k=m}^{\left[\frac{n}{2}\right]} b_k/k \leqslant \sum_{k=m}^{\left[\frac{n}{2}\right]} \left(\sum_{\mu=k}^{n} \lambda_{n,\mu}\right) b_k \left(k^{-1} + O\left(k^{-2}\right)\right).$$

$$< C.$$

Hence $\sum b_k/k < \infty$.

The proof for the case $b_n \ge -\lambda_n$ when $\lambda_n \downarrow O$ and $\sum \frac{\lambda n}{n} < \infty$, is similar to that of Boas.

Thus it follows that the theorem of Tomić remains true if we replace (2.1) by

$$\int_{0}^{\varepsilon} |t_{n}^{*}(x)| dx = O(1),$$

where $\lambda_{n,k}$ satisfies the condition (3.1) and $t_n^*(x)$ is the corresponding mean of $\sum b_n \sin nx$.

4. If we take $\lambda_{n,k} = \frac{A_{n-k}^{\alpha-1}}{A_{n-k}^{\alpha}}$, $\alpha > 0$ we find that condition (3.1) is satisfied.

Thus we deduce [1, p. 383], that in Theorem A condition (2.1) can be replaced by

(4.1)
$$\int_{0}^{\varepsilon} |\sigma_{n}^{\alpha}(x)| dx = O(1), \quad \alpha > 1,$$

which, is a lighter condition.

REFERENCES

[1] R. P. Boas, On sine series with positive coefficients, Math. Zeits. 80 (1963), 382-383.

v [2] M. Tomić, Über trigonometrische Sinus-Reihen mit positiven Koeffizienten, Math. Zeits. 75 (1961), 53—56.