ON MEASURABLE SETS UNDER CERTAIN TRANSFORMATIONS

K. C. Ray

(Presented February 25, 1966)

Let E_n be the n-dimensional Euclidean space of points or vectors (t_1, t_2, \ldots, t_n) t_r real. Let C be any set in E_n and let T denote any general linear transformation of the form:

$$x'_{i} = \sum_{j=1}^{n} a_{ij} x_{j} + a_{i}, \quad i = 1, \ldots, n.$$

We shall denote by T(C) the set of points of E_n which are the transformed points of C under T.

In a previous paper [4], among other results, the author has proved the following theorem: Let A and B be two closed bounded sets in E_n having positive measures. Let p be any positive integer. Then there exists a sphere S in E_n such that if $\lambda_1, \lambda_2, \ldots, \lambda_p$ are any vectors in S, then the set of points ξ such that $\xi \in A$ and $\xi + \lambda_r \in B$, $(r = 1, 2, \ldots, p)$ is closed and is of positive measure.

If $T_r(r=1, 2, ..., p)$ denote the transformations of translation, viz., $x_i = x_i + a_i^r$, (i=1, ..., n), then it is clear that the conclusion of the above theorem depends on showing that the set such as $X = A \cap T_1(B) \cap T_2(B) \cap ... \cap T_p(B)$ is a bounded closed set of positive measure.

It is now natural to enquire whether the set X as defined above, still remains a closed set of positive measure if one replaces T_r by a suitable general linear transformation of the form:

$$x'_{i} = \sum_{i=1}^{n} a_{ii}^{r} x_{j} + a_{i}^{r}, _{n+1}; \quad i = 1, \ldots, n.$$

In this paper we have been guided throughout with this consideration and we prove here some theorems which generalise some of the results of [1], [2], [3], [4], [5], [6], [7]. It may be noted, however, that the methods of proofs adopted here differ considerably from the proofs of the corresponding theorems in the particular cases.

In this connection we mention here a well-known result [8, p. 162] viz., if C is a Lebesgue measurable set in E_n and T any nonsingular linear transformation in E_n then T(C) is also Lebesgue measurable and $m\{T(C)\} = |D| m(C)$, where |D| is the absolute value of the determinant of the transformation and m(X) denotes the Lebesgue measure of X. Throughout the paper we shall understand by sets, the sets of points or vectors in E_n .

Notations: (i) Lebesgue measure of any measurable set X will be denoted by |X|; (ii) by $K(c, \rho)$ we shall understad a sphere in E_n with centre c and radius ρ ; (iii) if A and B are two sets, then A/B is the set of points of A which are not in B; (iv) if $S \subset E_n$, then $S' = E_n/S$; (v) the distance set of two sets A and B is the set of all nonnegative numbers |x-y|, $x \in A$, $y \in B$; (vi) A-B denotes the difference set of A and B, i.e., the set of all vectors a-b with $a \in A$ and $b \in B$.

Theorem 1. Let A and B be two closed bounded sets having positive measures and p be any positive integer. Then we can find a positive number M>0, $\delta(>0)$ and p vectors $\mu_k = (\alpha_1^k, {}_{n+1}, {}_{n+1}^k, {}_{n+1}^k, {}_{n+1}^k, {}_{n+1}^k)$ such that if T_k , $(k=1, 2, \ldots, p)$ be any linear transformations given by

$$x'_{i} = \sum_{i=1}^{u} a_{ij}^{k} x_{j} + \alpha_{i}^{k}, \, n+1; \quad i=1,\ldots,n$$

where

(1)
$$l \leqslant a_{ij}^{k} < 1 + \frac{\delta}{(M+1)n}, \quad i = j \\ 0 \leqslant a_{ij}^{k} < \frac{\delta}{(M+1)n}, \quad i \neq j \end{cases}$$
 $i, j = 1, \dots, n$

then the points ξ such that $\xi \in A$ and $T_k^{-1} \xi \in B$, (k = 1, ..., p) form a closed set of positive measure.

Proof. Since A and B are of positive measures, there exist two closed spheres

 $K_1 = K(a, r)$ and $K_2 = K(b, s)$, where $s = \left(\frac{p}{p+1}\right)^{\frac{1}{n}} r$ such that $|K_1/A| < \varepsilon |K_1|$ and $|K_2/B| < \varepsilon |k_2|$, where

$$0 < \varepsilon < \frac{1}{2p^2 + 2p + 1} [8, p. 156].$$

Since A and B are bounded, there exists a sphere K(0, M) which contains both A and B. We choose δ such that

$$0 < \delta < \frac{r-s}{2^{n+1} n! p^2 (r+1)}$$
.

Let T_1^k and T_2^k be the transformations given by

$$\left. \begin{array}{l}
 T_{1}^{k} : \overline{x}_{i} = x_{i} + b_{i}^{k}, \, _{n+1} \\
 T_{2}^{k} : x_{i}^{'} = \sum_{j=1}^{n} a_{ij}^{k} \overline{x}_{j} + a_{i}^{k}, \, _{n+1}
 \end{array} \right\} i = 1, \ldots, n; \quad k = 1, \ldots, p$$

and satisfying (1), (2).

and the vectors $(b_1^k, {n+1}, \ldots, b_n^k, {n+1}) \in K\left(c, \frac{r-s}{2}\right)$ where a-b=c. Also, let

 $C_k = T_2^k T_1^k (K_2 \cap B)$ and $C = K_1 \cap A$. We shall show that |X| > 0, where $X = C \cap C_1 \cap C_2 \cap \ldots \cap C_p$.

If x' be the corresponding point of x under T_2^k then from the conditions imposed on the elements a_{ij}^k it follows that $|x-x'| < \delta$. So, $C_k \subset K_1$, (k=1, 2, ..., p). We suppose that $T_2^k T_1^k = T_k$, then $C_k = T_k(K_2 \cap B)$.

If D_k be the determinant of T_k , then $D_k > 1 - \sum a_{i_r j_r} a_{i_s j_s \dots} a_{i_t j_t}$, where the summation contains $\frac{1}{2} n!$ terms.

Again, it can be verified that any term of the above summation satisfies the relation

$$a_{i_{r}j_{r}} \dots a_{i_{t}j_{t}} < \left(1 + \frac{\delta}{(M+1)n}\right)^{n-2} \cdot \frac{\delta}{(M+1)n} \cdot \frac{\delta}{(M+1)n}.$$
So, $D_{k} > 1 - \frac{n!}{2} \left(1 + \frac{\delta}{(M+1)n}\right)^{n-2} \cdot \frac{\delta^{2}}{(M+1)^{2}n^{2}}$

$$> 1 - 2^{n} n! \delta$$

$$> 1 - \frac{r - s}{2 p^{2} (r+1)}$$

$$> 1 - \frac{1}{2 p^{2}}.$$

Now, $|X| > |K_1| - [|C_1'| + |C_2' + \cdots + |C_p'| + |C'|]$, complements being taken $w. r. t. K_1$. But $|C'| = |K_1/A|$ and

$$\begin{aligned} |C_k'| &= |K_1| - D_k |K_2| + D_k |K_2/B| < |K_1| - \left(1 - \frac{1}{2p^2}\right) [|K_2| - |K_2/B|] \\ \text{So,} \quad |X| > |K_1| - [p|K_1| - p|K_2| + \frac{1}{2p} |K_2| + \left(p - \frac{1}{2p}\right) |K_2/B| + |K_1/A|] = \\ &= |K_1| - [|K_2| + \frac{1}{2p} |K_2| + \left(p - \frac{1}{2p}\right) |K_2/B| + |K_1/A|] \\ &> K|_1| - \left[|K_2| + \frac{1}{2p} |K_2| + \left(p - \frac{1}{2p}\right) \varepsilon |K_2| + \varepsilon |K_1|\right] \\ &> 0, \quad \text{since} \quad 0 < \varepsilon < \frac{1}{2p^2 + 2p + 1}. \end{aligned}$$

If $\xi \in X$, then $\xi \in K_1 \cap A$ and $\xi \in T_k(K_2 \cap B)$, i. e., $\xi \in A$ and $T_k^{-1} \xi \in B$, $(k = 1, \ldots, p)$. Thus the set of ξ such that $\xi \in A$ and $T_k^{-1} \xi \in B$ is a closed set of positive measure.

Corollary 1. If $a_{ij}^k = 1$, i = j and $a_{ij}^k = 0$, $i \neq j$ for k = 1, ..., p then we obtain theorem 1 of [4].

Corollary 2. If A=B, a=b and b_i^k , n+1=0, $i=1,\ldots,n$; $k=1,\ldots p$ then we obtain theorem 1 of [3].

Corollary 3. If $a_{ij}^{k} = 1$, i = j and $a_{ij}^{k} = 0$, $i \neq j$ for k = 1, ..., p and A = B, a = b then we obtain theorem 1 of [1].

If $a_{ij}^k = 1$, i = j and $a_{ij}^k = 0$, $i \neq j$ for k = 1, ..., p and A = B but $a \neq b$, we obtain the following

Corollary 4. Let A be a closed bounded set having positive measure. Let p be any positive integer. Then there exists a sphere S (with centre different from the origin) with the following property: if $\lambda_1, \lambda_2, \ldots, \lambda_p$ are any

vectors in S, then the set of ξ such that $\xi \in A$ and $\xi + \lambda_r \in A$, r = 1, ..., p, is closed and is of positive measure.

Corollary 5. If n=p=1 and $a_{ij}^k=1$, i=j and $a_{ij}^k=0$, $i\neq j$ then we obtain a result of [5] which is an extension of a theorem of Steinhaus [7] that the set of distances of two sets with positive measures contains at least one whole interval.

Corollary 6. If A and B are two bounded sets of positive measures, then the difference set A-B contains a sphere [2, 6].

Theorem 2. Let A and B be two closed bounded sets of positive measures. There exist a positive number M and linear transformations

$$T_{\delta_k}: x_i' = \sum_{j=1}^n a_{ij}^k x_j + a_i^k, \ n+1; \ i=1,\ldots,n; \ k=1,2,\ldots$$

where the elements a_{ij}^k satisfy the relations (1), (2) replacing δ by δ_k such that if $\{\lambda_k\}$, $\lambda_k > 0$ be any null sequence, there exists a subsequence $\{\lambda_{nk}\}$ of $\{\lambda_k\}$ and a point $\xi \in A$ such that $T_{\lambda_{nk}}^{-1} \xi \in B$, $_{k=1}$, $_{2}$,...

The proof of the theorem follows in the same lines as the proof of Theorem 2 of [4].

Theorem 3. Let A and B be two closed bounded sets of positive measures. There exist a positive number M, a null sequence $\{\mu_r\}$ and vectors $(b_1^r, {}_{n+1}, ..., b_{n,n+1}^r)$ such that if $\{\delta_r\}$ be any null sequence satisfying

$$0 < \delta_r < \min \left\{ \mu_r, \frac{1}{2^{n+r+1} n!} \right\}$$

and T_{δ_p} is the linear transformation

in an open sphere K(0, M).

$$x_{i} = \sum_{j=1}^{n} a_{ij}^{r} x_{j} + b_{i,n+1}^{r}; \quad i = 1, \ldots, n$$

where

$$1 \leq a_{ij}^{r} \leq 1 + \frac{\delta_{r}}{(M+1)n}, \quad i = j$$

$$0 \leq a_{ij}^{r} \leq \frac{\delta_{r}}{(M+1)n}, \quad i \neq j$$

$$i, \quad j = 1, \dots, n$$

then the set of points x such that $x \in A$ and $T_{\delta_r}^{-1} x \in B$, (r = 1, 2, ...) forms a closed set of positive measure.

Proof: Since A and B are of positive measures, there exist two closed spheres $K_1 = K(a, r)$ and $K_2 = K(b, s)$ where $s = \left(\frac{p}{p-1}\right)^{\frac{1}{n}}r$ such that $|K/_A| < \varepsilon |K_1|$ and $|K/_B| < \varepsilon |K_2|$, where $0 < \varepsilon < \frac{1}{2p^2 + 2p + 1}$. Let $A_1 = K_1 \cap A$ and $B_1 = T_1(K_2 \cap B)$, where T_1 is the translation given by $T_1 : \bar{x_i} = x_i + \lambda_i, i = 1, \dots, n$, where $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n) \in K\left(c, \frac{r-s}{2}\right)$ and c = a - b. Then, as in theorem 1, it follows that $A_1 \cap B_1$ is a closed set of positive measure. Let $Y = A_1 \cap B_1$ be contained

We first show that there exists a positive null sequence $\{\mu_r\}$ such that if $\{\delta_r\}$ be any null sequence satisfying $0 < \delta_r < \min\left\{\mu_r, \frac{1}{2^{n+r+1} n!}\right\}$ and $T\delta_p'$ is the linear transformation

$$T_{\delta_r}': x_i' = \sum_{j=1}^n a_{ij}^r \overline{x_j} + a_{i,n+1}^r; \quad i = 1, ..., n$$

$$1 \le a_{ij}^r < 1 + \frac{\delta_r}{(M+1)n}, \quad i = j$$

$$0 \le a_{ij}^r < \frac{\delta_r}{(M+1)n}, \quad i \ne j$$

where

and

then the set of points x such that $x \in Y$ and $T_{\delta_r}^{(r)} x \in Y, (r = 1, 2, ...)$ forms a closed set of positive measure.

As shown by Kestelman [1], we may define a sequence of open sets $\{U_r\}$ such that $U_1 \supset U_2 \supset U_3 \supset \ldots$;

$$Y = \prod_{r=1}^{\infty} U_r$$
 and $\sum_{r=1}^{\infty} \{ |U_r| - |Y| \} < \frac{|Y|}{2}$.

If $\mu_r(>0)$ be the distance between Y and U_r' (Complement of U_r), then obviously $\{\mu_r\}$ is a null sequence of positive numbers. We choose the number $\delta_r(>0)$ such that $\delta_r < \min\left\{\mu_r, \frac{1}{2^{n+r+1}n!}\right\}$ so that $\{\delta_r\}$ is also a positive null sequence. Let $C_r = T'_{\delta_r}(Y)$. If x' of C_r be the transform of a point x of Y under T_{δ_r}' , then it follows from the conditions on the elements a_{ij}' that $|x'-x|<\delta_r$ $<\mu_r$. So, $C_r \subset U_r$ for every r.

Let $Z = C_1 \cap C_2 \cap \ldots \cap C_r \cap \ldots$ If $\xi \in Z$, then $\xi \in C_r$, for every r, i. e., $T_{\delta_r}^{(1)} \xi \in Y$ for every r and $|\xi - T_{\delta_r}^{(-1)} \xi|$ $<\delta_r$. So, $tt T_{\delta_r}^{-1} \xi = \xi$. Since Y is closed, so $\xi \in Y$. Hence Z is the set of points ξ of Y such that T'_{δ_r} , $\xi \in Y$ for every r. Also since each C_i is closed, Z is closed.

Now
$$Z = C_1 \cap C_2 \cap C_3 + \dots$$

$$= U_1 - \sum_{r=1}^{\infty} (U_1 - C_r)$$

$$= U_1 - \sum_{r=1}^{\infty} (U_1 - U_r + U_r - C_r)$$

$$= Y - \sum_{r=1}^{\infty} (U_r - C_r).$$

Therefore, $|Z| > |Y| - \sum_{r=1}^{\infty} \{|U_r| - |C_r|\}.$

We can show, as in theorem 1, that if D_{δ_r} denotes the determinant of the transformation T'_{δ_r} , then

$$D_{\delta_r} > 1 - \delta_r (2^n n!)$$

> $1 - \frac{1}{2^{r+1}}, r = 1, 2, ...$

So, $|C_r| = D_{\delta_r} |Y| > |Y| - \frac{|Y|}{2^{r+1}}$ and therefore,

$$|U_r|-|C_r|<|U_r|-|Y|+\frac{|Y|}{2^{r+1}}.$$

Therefore,

$$|Z| > |Y| - \sum_{r=1}^{\alpha} \left\{ |U_r| - |Y| + \frac{|Y|}{2^{r+1}} \right\} =$$

$$= \frac{|Y|}{2} - \sum_{r=1}^{\alpha} \left\{ |U_r| - |Y| \right\} > 0.$$

Now, $\xi \in Z$ implies $\xi \in Y$ and $\xi \in C_r$, i. e., $\xi \in A$ and $\xi \in T'_{\delta_r}(Y)$. But

 $\xi \in T_{\delta_r}^{'}(Y) \text{ implies } T_{\delta_r}^{-1} \xi \in Y, \text{ i. e., } T_{\delta_r}^{-1} \xi \in B_1 = T_1(K_2 \cap B).$ Hence, $(T_{\delta_r}^{'} T_1)^{-1} \xi \in B.$

Therefore, $T_{\delta_r}^{-1} \xi \in B$, where $T'_{\delta_r} T = T_{\delta_r}$.

Thus the set of points $\xi \in A$ and $T_{\delta_r}^{-1} \xi \in B$ forms a closed set of positive measure. This completes the proof.

Corollary If A = B and a = b we obtain theorem 3 of [3].

Theorem 4. Let $A, A_1, A_2, \ldots, A_{m-1} (m>1)$ be closed bounded sets having positive measures. Then we can find a positive number M, a number $\delta(>0)$ and vectors $(a_1^k, n+1, \ldots, a_{n+1}^k)$ such that if T_δ^k be any linear transformation given by

$$T_{\delta}^{k}: x_{i}' = \sum_{j=1}^{n} a_{ij} x_{j} + a_{i, n+1}^{k}; k = 1, \dots, m-1 \text{ and satisfying (1), (2),}$$

then the set of points ξ such that $\xi \in A$ and $T_{\delta}^{-1} \xi \in A_k$, (k = 1, ..., m-1) is a closed set of positive measure.

Proof: Since A is a set of positive measure, there exists a closed sphere $\Gamma = K(a,r)$ such $|\Gamma \cap A| > \left(1 - \frac{1}{4(m-1)}\right)\gamma$, where $|\Gamma| = \gamma$. Similarly, there exist closed spheres $\Gamma_k = K(a_k, s)$ such that $|\Gamma_k \cap A_k| > \left(1 - \frac{1}{4(m-1)}\right)\gamma_k$ where $|\Gamma_k| = \gamma_k$, (k = 1, ..., m-1) and $s = \left(1 - \frac{1}{2m}\right)^{\frac{1}{n}}r$.

Since the sets are bounded, there exists a sphere K(0, M) which contains all the sets A and A_i , $(i=1, \ldots, m-1)$. We choose δ such that

$$0 < \delta < \frac{r-s}{2^n n! (r+1) (4m-5) (2m-1)}$$
.

Let $c_k = a - a_k$, k = 1, ..., m-1. Let the transformations T_1^k and T_2 be given by

$$T_{1}^{k}: \overline{x_{i}} = x_{i} + c_{k}, \ k = 1, \dots, \ m-1$$

$$T_{2}: x_{i}' = \sum_{j=1}^{n} a_{ij} \overline{x_{j}}$$

$$i-1, \dots, n.$$

where

$$1 \leqslant a_{ij} \leqslant 1 + \frac{\delta}{(M+1)n}, \quad i=j$$

$$0 \leqslant a_{ij} \leqslant \frac{\delta}{(M+1)n}, \quad i \neq j$$

$$i, \quad j=1,\ldots,n$$

Let $X = \Gamma \cap A$ and $X_k = T_2 T_1^k (\Gamma_k \cap A_k)$, $k = 1, \ldots, m-1$. We put $T_2 T_1^k = T_\delta^k$ so that $X_k = T_\delta^k (\Gamma_k \cap A_k)$, $k = 1, \ldots, m-1$. We show that |Y| > 0, where $Y = X \cap X_1 \cap X_2 \cap \ldots \cap X_{m-1}$.

If x' be the corresponding point of x under T_2 then from the conditions imposed on the elements a_{ij} , it follows that $|x-x'| < \delta$. So, $X_k \subset \Gamma$, $k = 1, \ldots, m-1$.

If D_{δ} be the determinant of T_{δ}^{k} then, as in theorem 1, we see that

$$D_{\delta} > 1 - 2^{n} n! \delta$$

> $1 - \frac{1}{(4m-5)(2m-1)}$.

Now, $|Y| > \gamma - [|X'| + |X_1'| + \ldots + |X_{m-1}'|]$, where the dashes denote complements $\omega, \gamma, t, \Gamma$.

But
$$|X'| < \gamma - \left(1 - \frac{1}{4(m-1)}\right)\gamma = \frac{1}{4(m-1)}\gamma$$

and $|X'_k| < \gamma - D_\delta \left(1 - \frac{1}{4(m-1)}\right)\gamma_k, \ k = 1, \dots, m-1$
 $= \gamma - D_\delta \left(1 - \frac{1}{4(m-1)}\right)\left(1 - \frac{1}{2m}\right)\gamma$
 $= \gamma \left[1 - D_\delta \frac{(4m-5)(2m-1)}{4(m-1) \cdot 2m}\right].$
Therefore, $|X'_1| + \dots + |X'_{m-1}|$
 $< \gamma \left[(m-1) - D_\delta \frac{(4m-5)(2m-1)}{8m} + \frac{1}{8m}\right].$

Hence,

$$|Y| > \gamma \left[1 - \frac{1}{4(m-1)} - (m-1) + \frac{(4m-5)(2m-1)}{8m} - \frac{1}{8m} \right]$$

$$= \gamma \left[\frac{m^2 - 2}{4m(m-1)} \right] > 0.$$

If $\xi \in Y$, then $\xi \in \Gamma \cap A$ and $\xi \in T^k_\delta(\Gamma_k \cap A_k), k = 1, \dots, m-1$. So, $\xi \in A$ and $T^k_\delta \xi \in A_k$, $k = 1, \dots, m-1$. This proves the theorem.

In conclusion, I offer my sincere gratitude to Dr. B. K. Lahiri for his kind help and suggestions in the preparation of the paper.

Hooghly Institute of Technology, West Bengal.

REFERENCES

[1]. Kestelman, H., The convergent sequences belonging to a set. J. Lond. Math. Coc. Vol. XXII, 1947, 130 — 135.

 \angle [2]. Kurepa, S., Note on the difference set of two measurable Sets in E^n , Glasnik Mat. = Fiz i Astr., Tom 15, No. 2, 1960, 99 — 105.

[3] Lahari, B, K., On sets under certain transformations, Bull. Cal. Math. Soc. Vol. 51, No. 4, Dec. 1959, 145 - 153.

[4]. Ray, K. C., On sets of positive measure under certain transformations, Bull. Cal. Math. Soc. Vol. 7 (55), nr. 3-4, p. 225-230, 1963

[5]. Ray, K. C. & Lahiri, B. K., An extension of a theorem of Steinhaus, Bull. Cal. Math. Soc., Vol. 56, No. 1, 1964, 29 - 31.

[6]. Ray, K. C., On two theorems of S. Kurepa., Glasnik", Mat. — Fiz. i Astr. Tom. 19. No. 3-4-1964, 207-210.

[7] Steinlaus, H., Sur les distances des points des ensembles de mesure positive, Fund. Math. Tom 1, 1920, 93 — 104.

[8]. Zaanen, A. C., An introduction to the theory of integration, North Holland Publ Co., Amsterdam, 1961.