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In this paper is given a method for solution of problems of unsteady incompressible
laminar boundary-layers, where it is assumed that the velocity of the external potential flow
is given in such a form to separate the variables, namely U (x, )=V (x)-Q (¢). Principally,
the practical problems will be given in just this form, either that they are obtained by way
of theoretical, or by experimental consideration of the external potential flow.

1. Introduction

There are not many methods for solution of unsteady boundary layers in
comparison to the steady ones. Namely, there are only methods based on the
momentum-integral equations, as there are [1], [6], [8] and others, while there
are not general methods of Gortler’s type [3] from the class of solutions
based on exact equations of motion. But, there have been solved a set of
special problems, so Watson [10] has solved the case of degree and expo-
nential change of velocity on time; Yang [12] bas analysed the stagnation
point flow; Moore [5] has considered the case, in which the dependence
of velocity at the flow of the plate on time is an arbitrary function. Fur-
thermore, Schlichting [7], Sexl [9] and many others have solved the periodic
boundary layers. Hassan [4] has recently done a solution for a certain class
of problems on unsteady laminar boundary layers by introducing transfor-
mations which reduce the existing equations to equations in which the time does
not appear explioitly. Here, we have only shown some of sets of solved
cases so far, ’

In the present paper as well as in [3], we wanted the reduction to
similar solutions to be the essence, respectively, that in the process of for-
ming solutions the first term which would satisfy the boundary conditions,
would be a similar solution, while other terms in this process should only
bring the correction of this one within the boundary layer along the contour
and on time. To attain this, it was necessary to introduce new variables
instead of old ones, which would in themselves contain data for each particu-
lar problem which was under consideration. If we leave coordinates x unva-
riable, and instead of variables y and ¢ introduce the modified stream and
potential function of the potential flow around the contour which allows
similar solutions, then we shall satisfy the given postulate. In the paper [2]
was shown that the plate allows similar solutions.
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If the velocity of the potential flow on the plate is Q (), then from
the Cauchy-Langrange equation we obtain the expression for the potential
function

(1.1) o= [Q2(1)ds,
0

while for the stream function, it can be easily obtained the expression
(1.2) o= ()y.

With these magnitudes we shall formulate the transitory coordinates
(1.3) X, n*={, =0 |

But to give answer to the above given postulate, respectively that in the
case of similar solutions, our transitory variable n* should be reduced to the
unique variable of similar solutions, it was necessary to modify our transi-
tory variables (1.3). Therefore, the ultimately new independent variables for
solution of problems of unsteady boundary layers around the contour of the
arbitrary form will be

1 1
(1.4) X, n=——x%  T=—1%
VV3T v
respectively
Qy 1 ¢
(1.9) X, N=———, Te=— 2
A V3 N OfQ dt.

The solution then will be given in the form of special series by the
function V (x) and its derivatives with coefficients which are functions of
independent variables % and . For determination of coefficients of this series
we use the obtained system of partial equations. The solution of this system,
respectively the coefficients of special series are given in terms of power series
by =, with coefficients which are functions of the reduced distance v from the
wall. These coefficients — functions will be given in term of linear combina-
tions of universal functions, which can be tabulated once for ever.

In this paper is given also the classification of problems which can be sol-
ved by this method, and is given the method for its application. The applica-
tion of the method is very simple. Namely, in the domain of convergence,
the calculation would be simply effectuatéd by the time ¢ (respectively 1) i.e.
the coefficients-functions of special series could be found, and then would
conduct us along the x—axe, and would give us magnitudes of the boundary
layer on the single points on the contour.

2. The transformation of basic equations

The differential equations of plane and unsteady incompressible laminar
boundary layers are

2
o ou, 0w du_0U  0U ou

—_— u +v—,

ot ox dy Ot ox 0y?
ou 0v
_ + p—

2.2 —=0,
(2:2) ox 0oy
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where: x—distance along the wall of the contour which is flown round by
fluid; y —the normal distance from the wall; #— the time; u (x,y,7) and o (x,y,t)
—are the components of velocity in the direction of x, respectively y-axis, v-the
constant kinematic viscosity and U (x,#)=V (x)-Q(f)—in advance given velo-
city of the external potential current on the boundary of the boundary layer.
The boundary conditions are

u=U(x,1), v=0, y=0 and =0,
2.3) u=v=0, y=0 and >0,

u=U(x,1), y=o00.

If with indices x, y,#, we denote the partial derivatives on respective
coordinates and introduce the stream function ¢ (x,y,?) defined by
u=1,, o= —1{,, with ¢ (x,0,)=0,

the equation of the continuity (2.2) will be identically satisfied, and the
equation (2.1) is reduced to the form

(2'4) q".W + ‘Ly “va - ‘l)x Pyy = U, + UUx + V\Pyyy,
with boundary conditions
$,=U(xD, §,=0, y=0 and =0,
(2.5) $y=9,=0, y=0 and >0,
U= U(x, D), y—>o0,

If the velocity of the external potential current is given in the form of
Ux,0=V(x)Q®,

and if Q (?) is the function defined by # S [0, + o) and its square is integrable
in some interval [0,¢] then, as we have already shown in the section 1, we can
define the new variables, independent

t

(2.6) X, :=—1—S92(z)dt, =20
M 5 VVST
and dependent
@7 § (=L B2T)
v 3z V(x)

for every x>0,y>=0 and ¢>0.
Introducing expressions (2.6) and (2.7) in the equation (2.4) this will
be transformed to the form

(2.8) %vmn + (D)1 —=Fn-7 8“) +%") Fm- 3T e +BD V' (1 "8‘31 +%%Tm) +

+V (2~ G0 Tan )1 =0,
and the boundary conditions (2.5) to
Tn (%,0,7) =1, t=0,
(2.9) F*0,7)=F,(x0,7)=0, t>0,
lim &, &x9.1)=1, ‘

N> o
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where following notations are introduced

Qv3r v3T
2.10 a(t) = , T)=—",
(2.10) W= JORE
Assuming that the function V(x) is infinitely differentiable, then the
solution of the partial equation (2.8) can be found in the form of a special
series

(2.11) SEND=T )+ V T M)+ V@) T 07 +
+ VX))V () Fra (s D)+ -0

When in the solving of this problem the method of successive approximations is
applied,which has its physical meaning in connection with the process of forming
the boundary layer, then itis easily seen that such an iteration method yields
to (2.11). For the time being it remains open the question of proving of
convergence of this method, respectively of this series (2.11). On account of
the function ¥V (x), which in itself contains the shape of the contour, namely,
it represents the function which shows how the velocity Q(f) changes on
the plate, if it would be deformed in the contour of the arbitrary shape,
we shall say something of the influence of the shape of the contour on the
solidity of the convergence of the given method. Let us observe the two boun-
dary cases of the contour: in the case of the plate which is put in the
direction of the potential flow ¥V (x)=1, and in the case of it when put ver-
tically on the same flow V (x) =x. Then it is easy to see that in the first case
Vi),V (x),..... =0, and in the second one V' (x)=1, V" (x),...=0. It is obvi-
ous that in the first case the series (2.11) would reduce itself only to the term
o (m, 7), that would represent the solution of the flowing on the plate with
the potential flow of velocity €2 (¢), while in the second case it would be reduced to

(2.12) Fem) =3 Vel 7,
k=0
or, as V'(x)=1 then to
(2.12) Fn1)=> Tl 7).
k=0

For the time being not taking account of coefficients (%,t), we can
say that the convergence of this method is so much the better as the contour
all the less deviates from the plate and so more the front edges of the con-
tour are nearer to the null. In the case that the contour deviates more than
is stated in the series (2.11), we should take a greater number of terms. Later,
in the section 9 we shall return and explain this question a little fuller.

If the supposed solution (2.11) we put into the equation (2.18), then
it will be separated in the system of partial equations

3
Fonn +o(t)(1 - F, _V)an)‘i'?")FM_BTFVIT:o’
3
(213) Dy —a(e)(Py +1Prn) +—1 Py — 3¢ D +B(5) (1 = Fy = FF) =0,
3
Hyppy — o () (Hy +"7Hrm)+?'ﬂHm =37 Hye +B()(—2F, @, +

+ F®y, + OF,,) =0,
3
Hangn — o (%) (Han + 1 Hagn) +?"’)Havm — 37 Hape + B (7) (PFyy — F, @4 ) =0,
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where are introduced the signs

%0=F’ %IZ(D’ %2:}1’ %2a=Ha’ cee
The boundary conditions are

F,=1, &, =H,=Hp=---=0, y=0 and =0,
(2.14) F=F,=0, =0, =0,........ y=0 and >0,
F,—1, @&, >0,.............. R y—>o0,

In the above equations the functions «(t) and 8 () have the central
part, because the special data of every particular problem come explicitely to
expression only through them.

We can express the function « (r) also in following way
(2.15) a(r)=3riln9—,

dr
2

Q . .
as dt=— dt. The constant velocity €, is introduced only on account of
v

dimensional correctness.

From the third of expressions (2.6) one can see when Q (f)==0 at >0
then the variable t grows monotonly. Therefore, the uniqueness of variables
(2.6) is warranted everywhere, namely, v is for instance uniquely expressed
through t. Also «(z) is with 7 at the given Q(¢) a unique function of ¢.

This function, on account of its central importance, we shall name in
future the local principal function. At this, we have endeavoured that the
term principal should be in concordance with the essentially same function
in the paper [3].

The local principal function can be interpreted as the local parameter
of the form [1], which can be easily shown. If we transform the thickness
of displacement 8* and the thickness of the drop of the impulse 3** to the
new variables, we obtain

o0

(2.16) 8*=f(1__§4_>dy=\‘l/if% where o= lim (n—),
U Q N—r00
[
2.17 ¥ — l(l—i)d Y f 1—%. Vdn.
@.17) fU Y dy=2" [0 (1=
[H] 0

Substituting (2.16) in the expression for the local principal function,
we get '
)
(2.18) 0 (D)= 2,
72 vQ
from there one can see that it really represents the local parameter of the
form which appears it the paper [1].
The function B (7) multiplied by ¥’ would represent the convective para-
meter of the form [1]

%2 *2
(2.19) V=R 32U,
v 14

3 Publications de I'Institut Mathématique
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The sum of these two parameters, local and convective ones, would give
the entire parameter of the form [1], [6]

3*2(U,+ UU,)

. V' =
(2.20) «(®)+ V() U

The process of development of the boundary layer, which has also
formed the way for solution of the problem, has done that the central part
has the local parameter of the form, i.e. its significance is primary, while the
significance of the convective parameter of the form is secondary.

3. Connexions between the magnitudes of boundary layer and the newly
introduced variables

For the thickness of displacement and the thickness of the drop of the
impulse we have already found expressions in the function of new variables.
The expression is also easily found for the skin friction

N (x,7) _ Q(t) 1
. —=2=U(x, an(%, 0, 7).
(3.1) 002 N—-—= Q: /3s —&ml(*, 0,7

Now, we can find connexions Q=Q (1) and t=¢(tr). From the third of
the function (2.10) we obtain

(3.2) Q=0 exp( 'a (2) 1:\),
3 T
To
respectively, if we introduce the designation f(1)=-exp ( ) it follows
(3.3) Q(7) = f (7).

From the third of the equation (2.6) and the equation (3.2) we
obtain

v v de
G o) P

From here, we can calculate in every special case the inverse function.
For further work, which derives from the local principal function « (1) given
in advance, we have obtained following expressions

u(%,9,8) = Qo V (x).f (v) Fa (x, 9, 7),

(3.5) t—t0=—v— dr ) . V3T

@ 7T T

In practical problems the function Q (), mostly will be given, and then
it is necessary to determine the local principal function « (). It will be given
in the function of the time ¢, but from t=1(f) by inversion #=¢ (<), hence
also a=a (7).
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In further work, we shall assume that the function Q(¢) is given in the
form of unlimited series or in polynome on time t.

4. The development in series of function Q (#),x(t) and B (¢) and their
connexions.

Let us suppose that the function Q (¢) is analytical on the interval 0<{t<< oo
and it can be represented in term of convergent power series

(4.1) Q@)= D Q¥
k=0

We shall observe two cases of function Q (¢):

i) QO=Q,+Q t+Q,2+..., Q,7#0,
4.2)

it) Q@)y=Qt+Q, 2+ . ..., £,70,
and give for them the form of local principal function.
The case I:

If a body is in movement at the velocity €2, then the change of this
state on time will be given by the law (4.21) respectively, it will belong to
the case I.

Let us see now, what form will have the local principal function?

Substituting the expression (4.1i) in the third of the equation (2.6) we
shall obtain that

4.3) =L< S 5 —;Qk Qitk+i+1)’
v \ioico k+i+1

respectively

(4.3") T=gt+ g%+ ...,

then from the theorem of inversion follows
4.4 t=ct4 4. ..
From (2.10) and (4.3) is

a(t)=dt+dyt*....,

B ()=ett+et>+....,

respectively
a(1)=a17+a212+ e e e = z (X.i"l.'i, with 0{0=0.
i-o
(4.5)

B()=ByrtByei - - = 3 B

i=1
If in (2.10) we introduce (4.1), (4.5) and the third of the expression
(2.6) and if we equalize values along the degrees #, we shall obtain the coeffi-
3.
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cients oy and B; of functions « () and B (). Then follows:
%=0
o, =3a,
(4.6) o= —9a} +6a,
«y=27a} —33a,a,+9a,
wy= —8la} + 142a%a,— 544, a,— 2243 + 12a,

2415 988 > 1093

a5=243af + aia; + ?al a— a?a2—60a2 a;—81a, a,+ 15a;
4.7

Bo=

B =3b,

Bz= —3b2

By = — 3b,+ 6b, a?

By= —3b,+ 14b, a,— 14b, a}

3 0

Bs= —3b5+12— b4a,—3.2§b3a%+7bla§+35b1a:,

where

Q; v b Qv

= A T
QOZt+1 QO‘

a;

If we introduce non-dimensional magnitudes

- Q — Q.

(4.8) t =——l—t Qk= a‘?lk’

and also we put

(4.9) ; =%‘ , ;k=°(k Rf, §k=Bka:

e

then one sees that following relations exist

QO =2tk Q(1)=DQ, 7%,
k k
(4.10) a(¢)=;aﬂkﬁ {(F)=§2k?k,

B(v)= gakrk o Br)= gﬁk *,

that means that systems of formulae remain formally the same. But, it is
simpler to have magnitudes with signs.
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The case 1I:

For this case, from (2.6) and (4.1) with respect to that Q,=0 and
Q,7#0, we get

4.11 S S 0,0 z"+"+1)
@10 (kz=1 Zlk+l+l o
respectively

4.11') =8 B 4g

By inversion we obtain

(4.12) t=cistB+ eyt ...

The function «(t) i B(r) will have the following form
«(t)=14+d, t+d, 22+
B(r)=e2+e; B8+ ...,

respectively, on account of (4.12)
a(®)=14oaypt P+ ... = > a3 TR, with =1,
4.13)

Bk/3 Tki3
2

B(r) =Bt +Pyt+ -

fl\/ls

We can obtain easlly the coefficients a3 and B3 of these functions
from (2.10), if we take into account the expressions (4.1), (4.13) and (2.6).
It follows

og =1

a1/3=—2a1/3

1/3 2 1/

23 agz +— 6 a

dy3 = ——o

2/3 20 1/3 5 2/3

203 296 4
(4.14) a] =m—a173—W 01/3 a2/3——3‘a1

v 919 44 5226 0 9 1088 , 22
4/3 600 1/3 150 1/3 2/3 7 1/3d, 175 2/3 21 4/3
i} 1839 o 2931 5 2004 5 - 9576, .
oy — 1839 9576

P T 00T T3 MM gy B it s 2

3
Qy3da4/3 ——— a3, ——ds;3,
20 'og

539
+
588
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Bo =0

Biz=0

B2z =bap

1

‘31 = 5’ b,

(4.15)
1 3
Baps= > bays aifs — 5 bass
7 37 2

Bs;s= 30 b2/301?3 + 30 byazs — 3 bsp3,

where
Qi (3v)173 b Qi (3v)7
aij3= ——Q'f'ﬂT s i3 = ‘_Q—%in

Also here we can introduce non-dimensional magnitudes and show that
the systems of formulae remain formally the same.

If the local principal function is given in advance then is easy to solve
also the inverse problem i.e. to find the coefficients Q; of the function Q (?)
from the formulae for g; and a;p.

5. Generalization of the given problem

Many of practical problems are comprised by the investigated cases 1
and II. But, it is possible to accomplish the generalization of the given pro-
blem, if we put the question, to which of external potential flows belong the
local principal function given by the following forms

) a(@=a+o,t+u,w2+ ...,
(5.1

ii) oc(‘r)=oc0+oc1/3‘rl/3+oc2/3r2/3+ Cee

In order to answer this question we shall return to the (3.2) in which
instead of «(7) we shall substitute the above expressions i) and ii)

L

T
‘—)3 (Go+a,t+qm*+ ),

) Q@)= QO(T
(5.2)
1

T\3® .
—) (Go+qupe'P+ - ).

ii) Q(r):Qo(
To
In the same way for the given two values of the local principal function

(5.1) from (3.4), we obtain

2
N ot@=t 2 (gt rr ),
(5.3)

l—ia

o 0
i) t(v)=1 3 (rp+ripeB+.--)
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If we substitute (5.3) into (5.2) we obtain

D) Q) =1"(sg+ 5, 2145, 2@m+D . L)),

(5.9
ll) Q (t) =" (So + 81/3 p3emin 4 L., ),
where
%o . l
m= , respectively ¢y = , at ms#£E ——.
3— 204 2

From the general expression (5.4) it is easy to obtain the investigated
cases I and II. So, for «,=0(m=0) we obtain our case I, and for «,=1
(m=1) our case II.

Let us observe still one special case of the local principal function

(5.5) a(t)=0o,
For this case from (3.2) we obtain

— ot
3

5.6 Q@0=0 (i)

To

and from (3.4)

[ S %1 3
T I 3vr To _ for oy #—,
v Ty 3 1 2
O f (—) d:= 1033249 |\
0 T | VT, T - 3
T —In (—) for oty =—.
l QO To 2

By a suitable choice of the disponible value #,, we can write this result as

iao—l
3 3
A (i".) for «, 7&7 s
t

. T

(5.8) = . 3

to[l + ln(——)] for oy =—.
Ty 2

From here it is easy to find the inverse function

1)3_2% for «, ;ﬁi,
(5.9) ‘e 2
t—t 3

o 0 for og =—.

exp( to ) (25} 2
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If we substitute the given expression into (5.6), it follows

Q, <i>m for m+ oo,
(5.10) Q)= o
Q, ex (i?—t()) fi =
0 €XP or m=o0,
3 ¢

In the paper [2] it is shown that this form of velocity of the external
potential flow on plate allows the similarity of solution and is simple to be
solved, since the partial equation is reduced to the ordinary differential equation.

The function B(7) will have the following form in cases (5.4i) and (5.4ii)

i) B(T)=7k(@o+ﬁlf+ﬁzfz+ cee),
(5.11)

i) B(r)=7*Bo+Biat"P+Papps2+ .- ),
and in the case (5.10)
(5.12) B(r)=B, ",
where

k=Tl
2m+1

6. The solution of the given system of partial equations

By choice of series for the modulated stream function F(x,n,7) in the
form (2.11) from the partial equation (2.8) we have obtained a system of the
partial differential equations (2.13), then we have investigated in detail the
connection between the function Q(r) and the functions «(7) and B(t) and in
that way we have done all preparations for solution of the given system.

We shall investigate both of large classes i) and ii) of all local principal
functions which in the observed interval 0<t<=t, can be developed in
powers series

a(*r)=Zboc,T",
(6.1)
a(t)= Z a3t
i=0

with an arbitrary (rational) «, Earlier we have seen that to them belong in
uniform correspondence the external potential velocities of the forms

gl (t) — z P Qk tk(2m+1)’
k=0
(6.2)

Q)= 17 Qs 1k13Cm+D),
k=0
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All values of the parameter 0<{m<Coo <0<a0< %) can be of interest in

application. But, here we shall restrict ourselves only to two special cases to
which the following values of the parameter: m=0 (¢;=0) and m=1 (xy=1)
correspond, and which are practically also most interesting. The case oy=0
we have denoted earlier as

The case I:

0 =0 (m=0),

Q (1) = 2 Q 1%,
k=0

with Q,#0 (and otherwise arbitrarly), Q;—arbitrarly (i=1,2...).
The calculation of the coefficients oy from the coefficients €, is given with
the equations (4.6), and the coefficients . with (4.7).

If in the system of partial equations (2.13) instead of «(7) and B (r) we
introduce the expressions (5.li) respectively (5.lii) then the given solutions
will be suitable for calculation as powers series in t with coefficients which
are functions of the reduced distance v from the wall

Fa=S B, @@an=> Bl
k=0 k=1

H(nm)= S Hiln) =
k=2

Substituting such assumed solutions into thz system (2.13) each of equa-
tions of this system will separate itself into the system of ordinary differential
equations for determination of coefficients-functions of every of above powers
series. As, the systems are recursive we shall write them in the form of re-
current formulea

trs ’ 17 3 X
o +o (1—F0——Y)Fo)+—2—'Y]F0:0,
1 ’ r 3 r ’ k-1 ’ r
Fy + oy (l—Fo—’r)Fo)+A2—'Y]Fk —3k Fy+ z O(i(Fk._,'+’I}Fk_,~)=0,

i=0

(k=12,...)

e ’ ' 3 1 ! 7 re
@, +%(¢,+T,q§,)+7n<pl _3® +B8,(1—F¢ + FyFo)=0,

rre k—1 ’ 1 3 " 1 ’ ’"”
64 D -3 ai(@k4;+7}¢k_i)+—2—‘q @ —3k D+ B, (1— Fg +~ FyFo) +-

i=0

k—1 k—i k—i .,
+ Zﬁi[_ijFk—i4j+z Fij_i_j]ZO, (k=2,3,...)
i=1 j:O j=0
1 k=2 ’ 1" 3 ’ ’ k—i k—1 ’ ’
He —> o (Hk-—i+7]Hk—1)+“5“f]Hk —3kHi+ 3 Bi[—2z Fre_ij®j+
i=0 i1 i

k—i 1" k—i "
+S Fuig @) + 3 Fiij qb,-]:o, (k=2,3,...)
j=1 je=i
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’r k-2 ’ 2] 3 1" ' k—1 k—i 1%
Ha— 3 oy (Hak-i +7 Hak—i)+?7) Hao— 3 Ha+ 5 Bi[ > FyPpiy—
i=0 i=1 j=1
k-1

~SFj <1>k’_,-_,-] =0, (k=2,3,...)
j=1

The boundary conditions transform themselves into the following forms
F5(0)=0,  Fy (0)=F(0)=0
Fo(o)=1, Fi(»)=0, (k=12,...),

@ (0)= P, (0)=0,
(6.5)
Dy (0)=0, (k=1,2,...),

H (0)=H(0)=0,
Hi()=0, (k=2,3,...).

In all given differential equations (6.4) appear the parameters «g,oy,. . .
and B,,8,,... for determination of F,(v), @, (v),... For the case of similar
solutions, we have had it, that the local principal function «(r) is reduced to
ag, and of the system of differential equations remains the equation for deter-
mination of F;(v). In this differential equation appears also «, except the
variable n so then Fy=F,(n,a,). As F,(,%,) is meritory for calculation of
all F(y).... (k=1,2,...), then we cannot have functions which are indepen-
dent of «, by giving a suitable form for F;(»), ... This one cannot expect either
from physical point of view, because a, and F, (4, o) that regulate the beginning
profile which are decisive for further behaviour at streaming.

But, it is possible to express Fj (v), ... through linear combination func-
tions which are independent of «y, «,,... and B;,B,,... Then for any fixed
value of «,, these universal functions can be tabulated once for all.

Reducing Fy (v),... for any fixed vclue «, to universal functions we
achieve it in the following way
Fy=F,
Fi=o fy

F2=°ﬁffu +oafy

F3=°(gfm+°(1 a0 frat a3 f

F4=“‘:fl111 +afa Szt oy 0(3f13+°‘§fzz‘|'“4f4

Fs= o fiy + ol o frnz+ o1 a3 fs + oy o3 fioa + oy ot frg o ot fo3 + s fs
(6.6) D= ¢

Py=0oy B1 P11+ B2 9,

D, = i Br P+ oy By 12+ op By @15 + P
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3 2
D, = a1 By Pris + 0 0 By @iz + 1 PrPriat s Baprstos By +
+ oty B2 Poz + Ba s
4 2 3 2
Ds=a1 PBr@ran + ol 02 Py Prizt + 1B Pz H o 2 By Praz + i By Pzt
2
+ oty otz By Pyay + 0y By Pra+ o By Pas -+ 22 31901 + k4 B31Pa1 + %3 By Pyp + Ps s

H,= B% hyy

Hy=o B% by +Bi Ba hyy

H,=af BT hygag + oty BE Pagy + oty By By uga + By By gy + B2h,

Hs= o1 BT Ay + % BT by + a5 B sy + 1By By by + B3 by +
0ty By By Paga + 4By B Pyus + Ba Ba Frys + By Ba s

Therefore, as stated above, the new systems of equations for determina-
tion of unknown f,... @,... will be independent of coefficients a;, o, ...
and By, B,, - .. All differential equations and boundary conditions are in Section 9.
The case Il

ay=1 (m=1),
Q(t)= 2 Qpy 541,
k=0

with Q,#0 (and otherwise arbitrarly), Q;—arbitrarly (i=2,3,...) The calcu-
lation of coefficients a3 from €, is given with equations (4.14) and the
coefficients B3 with (4.15).

Taking into account the forms of functions «(7) and B (t) which are
given by equations (5.11i) respectively (5.11 ii) the given solutions will be sui-
table for calculation as powers series in t!/? with coefficients depending on y

F(n,7)=3 Fepp () <kh3, D, 7)= > Drpln) T8,
£=o =2
(6.8)

H(n,7)=3 His(n) ™"
P}

The systems (2.13) because of (6.8) will be separated to following recursive
systems of the ordinary differential equations

1

’ 1 3 17
Fy +0(0(1—F0—-’I)F0)+—5—1]F0 =0,
11 ’ rt 3 2 ’
Fk/3+°‘k/3(1—FO—")FO)'*";'Y]Fk/S—kaIS—

k—1 , .,
_zai/3(FEi+7]F]£;1>=o, k=1,..))
i=o 3 3

(6.9)

1

? X 3 1 ’ ’ r
Do — oo (Pap3+1 ‘152/3)+77) @3 —2 D+ B (1—Fg + Fy Fo) =0,
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111 k-2 4 ” 3 " ’
Diz— > %3 (¢kT—£+7) <P’L§1) -I-?n Dipy—k Dz +
<o
” kel ki,
+Bus(1—Fg +Fy Fo)+ 3 Bins [— 2>, Fis Fzizit
=2 =0

k—i "
+ZFJ./3Fk“i_j]=O, (k=3,..))
j=0 3

e k—4 ’ " 3 " , k-2
Higs= 2 aifs <H5;+'f1 Hl&g—_‘>+?7} Hijs—k Hijs+ 3 Bi/s[
i=0 i=2
k—i—2 , k—i-2 L k—i=2
[~2 > Feoizi®in+ > Fkoizigp + > Fk-i-j d’m]=0 (k=4,...
j=0 3 j=0 3 j=0 3
rre k—4 ’ 17 3 1 ’ k=2
H gy — z oif3 (Ha% + Haﬁg_l) —}-?v] Hypn—kHpps+ Z Bm[
i=2

i-=0
k—i-2 k—i-2 ,
[ > Fip®k-i-i— > F,-/scbk_i,,-]:o, (k=4,...)
j=0 3 j=0 -3
The boundary conditions are
Fo(0)=0, Fr3(0) = Fr3(0)=0,
Fo(eo)=1,. Fis(e)=0,  (k=1,2,...)

(6.10)
B3 (0) = D3 (0) =0,
D3 (0)=0, (k=2,3,...)
The reduction of Fi;(v),... for any fixed «, on universal functions
will be achieved in the following way
Fy=F,
Fiz=oy3fi3
Fy3= o1 figs 13+ 0203 fais
Fi=oauh fip s+ ooz fip s + o fy
Fan=oainfipysipin+aipazsfisiys e fis 1+
o fans 23+ oay3 faga
Fspy=ails fus 1173 13 13 + 3023 f173 173 13273 + et oy fips /a1 +
+ a3 M22/3ﬁ/3 323+ y3 o3 fiys 4 + oo oS3+ asp fsgs,
(6.11)

D3 =Po3p23
D, =a13Bappipzs + 8, ¢

2
Dys=a13B23P131323+ 023 BoysPyszn+ 13 B 1+ Bappap
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3
Dsj3 = ot1/332/3 Q1/31/31/32/3 + 0L1/3 €23 Baspipzaas+ oy Bas e+

2
+aia Byt + eyl Py +araBapeipan + Bss s,

2
Hiz=PBz3ha323

2
Hs;z= o3B3 hyszysza+ B2l hapt.

All differential equations and boundary conditions are in Section 9
The special case:

Q()=Q, 1"
The functions « (t) and B (r) have the forms
OC(T)=O(0,
(6.13)
B(r)=PBr,
where
m+1
_ 3 Q, v(2mj1) it 3 g k=m+1__.
2m+-1 Qo 2m+1 2m-+1

From the expression (6.13) it is to be seen that the solutions F(x,1),...
ought to be found in the following form

(6.14) Fen,©)=F(), @(,7) =P, H(n,7)=H(n)7*
In this case the indepedent variables » and t are reduced to the form

_ 2m+_1 _i 2m41
(6.15) n_z\/ il e

where:
7, —the variable of similar solutions.

If we introduce the combinations
F=F,, ®=8*¢, H=03*h,
then after a very few elementary calculations the system of partial differential

equations (2.13) will be reduced to the following system of ordinary differential
equations

1"

Fo' +29 Fo —4m(1—Fg)=0,
o +2m ¢ —4(2m+1)¢'= —4(1-F5 +F, Fo),
(6.16)
h”,+2'fhh”'—4(3m+2)h,= ""4(-'2F(I)(P,+F0<P”+F(I),(P)y

ho +2nhy—4@Bm+2) k= —4(Fg 9—Fog'),

.......................
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with boundary conditions

F, (0)=Fo(0)=0, 9(0)=¢' (0)=0 h(0)=H(0)=0,...
(6.17)
Fo(0)=1, ¢ (0)=0, B (20)=0,...

From (2.7) taking into account (2.11) and (6.14) for the stream function
¢ (x,y,t) we shall obtain the following expression

U (%, 2, 1) =211 V (%) Qot™ {Fy () + Qo V' 1"+ () + QF im0 |
Veh()+ vV () ]+ - ).

Obviously, the equations (6.16) as well as the shape of stream function
(6.18) are quite the same with Watson’s [10], which he has obtained by sol-
ving the same problem.

7. Finding the time separation and the way which the body has performed
in a given time

With unsteady boundary layers it is interesting to find the moment of
beginning of separation from the contour, respectively the time interval which
" it takes to the moment when it begins the first time to be separated. From
the first moment of the appearance of separation, the point of separation will
move along the contour to the attainment of the steady state.

The position of separation at different moment of time can be calcula-
ted from the condition

Nran=0
from where

%7171 (x’ o, t) = 0:
respectively

(7.1) S F Q) +V' D DL (0)tk+ V2> HY (0)tk+
k=0 k=1 k=2
+VV'Y Huy(0)th+ + - =0
k=2

From here in each special case, stopping at the determined term of the
special series and with determined terms t of power series in the region of
convergence, we can find the position of the separation point on the contour
at different moment of time.

The way which the body traverses at different time intervals we can
find from the expression

I

(71.2) s=§Q () de.

0

8. The way for application of the method

We shall give instructions here for application of the given method
in concrete cases. Normally, the problems of theory of boundary layers
are so put up that outer velocity distribution is a prescribed one, more-
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over in the same way the local principal function « (t) can be given in advance.
We shall take the firsi more normally case and on Case I show the applica-
tion of it. In Case I:

Q)=Qg+Qyt+Q,2+ - - -,
respectively
3.1 U, )=V(x)(Q+Qt+ - - ).

To attain a more easy work it is better all magnitudes to make non-
dimensional

- x —_ QO - VF Qol
X=—, t=—1, = e, R,= —,
) I y=y ) v
(8.2)
TEn-2D Ty m=ri, a@0=29,
Q, Q,

— - - — 1 - 1
O(.k=0(kR,¢(, Bk=BkRI:: Fk=FkR,:, cpk:@k—l—R,:’ Hk=HkF‘Rf"'

1. First of all one has to calculate the transition from coordinates y, ¢ to
the coordinates .

83) ¥=j?22(7)dt', “=3@}=g"(t—)y‘,
3z
0

and since the function g(-t) appears also later it is useful to evaluate it
separately.

2. From the given coefficients Q, it is easy to calculate the coefficients o
and B, through the formulae (4.6) and (4.7).
3. The wall shearing stress is calculated from the formule
N_.,? ————— — — -, — —,
(8.4) —(’EZ—)R},’2=U(x, 1) g(t)[ZFk (0) Tk + 7' (xX) >, ®r (0) T + ]
0 Qo £=0 ot

4, The displacement thickness of the boundary layer is easily obtained
from (2.16)

* 7o 1/2
@5 ST&HRT 1 {lim (n—fo)—[z Fr( o)+
) g(r) (o= k=0

NZCHE ABCENN)

5. The velocity profiles on different places along the contour and in different
moments of time is calculated from the formulae

O e PAAOE R SOPX HOEE R
6. To find the separation moment we use the expression

(8.7) kzof;’ )7+ V' (%) :Z; By (0)th+ - - - =0.
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7. The expression for the way which the body traverses in a certain time
we obtain from

(88) 5= j Q) di.
0

8. As the attainment of the first contourn connexion is necessary to the
exact solution, then it is useful to verify it here too.
From the condition

02
(8.9) U,+UUx=—v( “) ,
0y2 y=0

with respect to
u=U(x,1) [Z Fre( e+ V' (x) 2 Or(p) 8+ - - ]
k=0 k=1

we obtain

1

Q=-vQg® > Fy (0) 7,
k=0

1

Q=—vg? 3 &, (0)7,
k=1

(8.10)
0= > Hy (0)7*,
k=2

e

0= > Ha(0)7,
k=2
The above expressions could be transformed further if one takes into account that

]
- B(T)=l—§;,

E(%):i
Qg
to the form

2 F @ k= —a (D),

2 PO = B (%)
(8.11)

> Hy (0)t*=0,

k=1

> Ha(0)75=0.
k=2

where
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9. The solution of systems of equations for determination of unmiversal functions
If we define the linear operator with expression
1t 1 1 3 1 ’
9.1) L (F)=F""—oay(F'+F )+—2—7)F ~3kF,

then the systems of differential equations for determination of universal func-
tions f... (M), ... (m),... could be written in the form

The case I:
k=0 Ly(F)=0
k=1 L(f)=—(1—Fo—nFo)
k=2 L(fi)=fi+nfi

Ly(f)= —(1—Fo—nFo)

k=3 Ly(fu)=fu+nfi

Ly(f)=f2+nfa+fu+nfi

Ly(fy)= —(1~Fo—nFy)

L, (fuu):f;ll‘*‘ﬂf;’u

L, (f112)=f{2+7)f;’2+f;1 +7)f;ll

L(fi)=fa+nfs +fi+0fi

Ly(f)=f2+0f2

Ly(f)=— (1—Fo—nFy)

k=5 Ls(fun)=fin+nf1n
Ls(fulz)=f1’12+")f1’;2+f1’11 +"2f111,1
Ls(fu)=fus+nfis+fu+nfi
Ls( f122) =f2’2+“’)f2/; +f;2+7)f;’2
Ly(fi)=fa+nfs +fi+nfi
Ls(f)=S3+nfs +f2+0 12
Ls(f)=—(1~-Fo—nFq)

k=1 L(¢)=—(1—-FF+ F,Fg)

k=2 L(pu)=¢1+n91 —(=2Fof1+Fy f{ + £, Fy)
Ly(9)= —(1-F¢ +F, Fg)

k=3 Ly(eu)=9u+n911—(—2Fofu—f{+Fofut+fif1 +f1 Fo)

4 Publications del'institut Mathématique

w‘
il
I

(9.2)
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Ly (92) =92+ 093 —(—2Fo f1+ Fo f1 +f, Fo)
Ly (92)=91+191 —(—2Fof2+Fy f2 + £, Fo)
Ly(9)= —(1—F¢' + F, Fo)
Ly @) =0t +0911— (=2 Fo fin—2f1 i+ Fo fiu +
+ [ 11+ fu S+ fug Fo)
Ly@p) =9 +192+eu+nen—(~2Fofa—2f1f2+
+Fyfutfif2+£,/1+ £, Fo)
Li(pu) =912+ 1912~ (=2 Fo fu—f L+ Fy f11+ £, f1 + fiy Fo)
Li(@s) =91+091— (=2 Fof3+Fy f5 +£, Fo)
Ly(@n)=92+192 —(—2Fof2+Fof2 + £, Fo
Ly(e)=—(1 —F(l)2+FoF:)’)
Ls (@10110) = 91111 + 11111 — (= 2Fo f 111 — 2f1f i — fis + Fo fiin +
+fif it fu S+ fin ST+ fun Fo)

Ly (@121 = 9121 + NP 121 + 9111 + N 111 — (— 2 Fo f112—
—2fifu—2fufe+ Foftn+fifu+fafu+fufz +
+finf1 +fuzF0)

Ls (9131) = @31+ 1931+ Q11 + 011 —(—2Fo f13—2f1 f3+
+Fy fis+£if3s +f3f1 +f3Fo)

Ls (922) =9s1+ n@n— (=2 Fof n—f 3+ Fo f2+fo.f2 + [ Fo)

Ls @) =912+ 09112— (—2Fo fin—2 f1 fu+ Fo fiun +
+fifu+fufi +fin FO)

Ls (@1) =92+ 092+ o2+ 1912~ (=2 Fof12~2f1f2+
+ Fof 2+f,f2 +£o1 + 2 Fo)
Ly (@) =013+ 1913~ (—2Fo fu—f I+ Fof 11+ fif { + /1 Fo)
Ls(9:,)=92+m92 —(—2Fof3+ Fof3 +f, Fo)
L (@5) =93+193 — (=2 Fof 2+ Fof 2 + £, Fo)
Ly(eu) =91+ 091 — (=2 Fofs+ Fof« +f, Fo)
L (9 =9s+nos — (=2 Fof1+Fof 1 +£, Fo)

Ly(ps) = —(1—F¢ +F, Fg)
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All equations of this system by introducing the new indenpendently

variable
3
”=J—”
"V
could be transformed to new forms

Fo +2%,Fo=0

U2 f —45i= —%(1 — Fo—n,Fo)

The obtained differential equations are of parabolic type [11]
9.3) Y'+2xy —4ay=0
and for boundary conditions

Y=Yy, for x=0

9.4 y=0, for x=c0,
they have the solutions [11]
' Ir(e+1) el p

V’t —2a—1(l/§x),

9.5) Y=y,2"2

respectively, as

(9.6)
1
D_3u-, (Vix) = 20‘—7‘/; exlz 8« (%),
where
2a p—Y2
O7 g@®= Vra+nf”x)ed“

the Gaussian function of error, while I' (¢4 1) —gamma function, the solution
would be reduced to

9.8) Yy=y,22* I'(x+1) ga(x)

This means that the solution of the equation (9.3) is to be found in
the form

9.9) y=c g« (%),
but taking into account that
r (oc + —1—)
2

Ve[ (2a+1)
one would find that the solution for conditions (9.4) is given with (9.8).

9.10) g2(0)=

4*
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When—2«—1=n then the function D_s. ;(/2x) is reduced to Her-
mit’s polinomial

. 1
Dega 1 (V2x)=2"7 el H_5, (%),

respectively

—x2 . 2 a—1 Hx2 d2a—l —x2
9.11) g (x) *-‘7: e Hyy 1 (x); Hogt (x)= (— 1) e TXZ-OZI— (e,
while when —2a—1= —n it i§ reduced to the function of probability

~ _VT‘: ( 1)2 X2/ —.d—ZGL x2 x — :l}
D_54 i (sz) ]/2 2! e dx2* {e [1 Vﬂfe dvy

respectively

1\2a 1 —X2 _d_z_i _ ) —Y2
012 @1 e dx2°={ [1 Vﬁfe dy]].

As we have concluded all preparations for solution of the given system
(9.2) we shall give also some of its solutions

Fo (1) =g~17, (1),

Fo(n)=1—8 (m); Fo(n)=m+gy, (n)— Py r(3/2)'

. 4 1 1
f1(m)= "? g () +— 3 go("h)"“l‘i g&-1(m)>

. 24 4 1 1 1
- - +— - e _—
Suu(m) 3 g () 3 g (m) p 8o () 108 g-1(n) 288 8- (),

(9.13) fé(m)=—Egz(m)+ g (m) + L g-1(m)>

3 6 18
320 80 10 5

fm ()= "‘—9" &) +— 9 &1, () +—9* &y, (1) —a gy, () +

1 1 1

-+ —— 2 2 _
Tes & 2592 g-s, (M) + Toses & 11, (M)

1216 80 2

f12 ("71)*—‘5“ 4 (711)“‘? g ("11)‘*‘ & ("21)—32 &)+

1 1
+— - >
10831("11) 21682("11)

, 128 1 1
fitn)= _T & (M) +— 9 &o (711)";4‘ g&-1(m),
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1 1

, 2 2 1
=~ (3+— ———] &y =l
or(m)=— ( 3 r2(3/2))g )+ &)= r2(3/2) g1, (M) +
2
+J- g_1(n) +_2“ g12/z ) —— go(m) & ()
12 3 3
, 64 /1 1 1 11
=——— |\~ ) +— 3+ 1 U
Q11 (01) 3 (3 A F2(3/))g () + 3 ( 3 r2(3/2)>g ) —
4 1 1 1
—_— 1 5+ — o E
277 T0) gy, () — 18( 3 r2(3/2)>g () +
1 7
+54 I"(3/2)~g 1y, () +—— 108 g1 (m) — 108 r(s/z) g3, () +

1 4
4+ )y —— —-= -
24 g ,(m 3 gi(n) 3 g/z(m) 3 — gb (ny)

4 2 1
Y g1, (M) & (m)+? g () & (m)+? g-1, (M) &2 ()~

8 1
—*9“ g (1) & (7)1)‘& g1 () g (s

64 1
45 200

-1z (721) T

) g (“’h)jL &o (M) —

P2 (M) = — 3 15 F(3/2)

I 4 2 4
LRI gt (m)+ 5 g, ()= - & (1) &2 ()=

2
-3 & () & (y)-

It is also easy to obtain the other solutions, but we will not cite them
here as they are too long*.

With regard to that we have explained the whole method and given
(some) solutions of the system of differential equations (9.2) we can proceed
to the consideration of the question of convergence series (2.11). While in
Section 2 we have spoken only about the influence of the contour on the
goodness of the convergence of this series, here, even if not in completeness,
we shall give its proof. The series

FEND=F0,0)+V' (xX)@07)+ V) H@D)+ V(@) V' (x)H,(,7) + - - -,

because of (6.3) can be written in the form

(9.14) F=S [Fr+ Vi (V2 Heo VYV Hypy ) w424 -]
k=0

* Butin my thesis there are solutions for 62 equations Wwhich correspond to stopping at the second term
of series (2.8) and at the fourth degrees of series for F (7, 1) and ® (7, ).
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For the function Q(f) we have earlier supposed that it is bounded in a
domain 9, namely

(9.15) sup | Q) |=N
ted
then, if
sup [ dt=A4,
4
and the function 7 (¢) is bounded
2
(9.16) sup IT(I)I<M
ted v

Let the function Q(f) be once differentiable, then the local principal
function is bounded

9.17) sup |a(t)]<3.
te®d

Hence it follows that «, makes bounded a set of numbers as the function

Ji» Ju fi, are bounded, what one can see from (9.13), this the functions
F, @4, are also bounded

Fi<d,,
(9.18) &4 ,<d,,
Hk+2<d29 Hak+2<da2’
and let be for instance d,>d,,,... Consequently we can make the majori-

zation of series (9.14)

(9.19) FSS ™ [dy+ V' dir+ (V2 VY dy 4 - - -]

0

T™M3s

The function ¥ (x) is by our supposition quite sufficiently differentiable
and its derivatives make a bounded set of functions in an interval J, namely

(9.20)
sup | V™ |=M,.

xelJ
Then, if
sup [ dx = B,
then
(9.21) sup | po-m | < MnB”
xelJ m!
Taking into account that V2>VV" V3>VV'V'>VV',... one can

make the further majorization of the above series

(9.22) F<3 T"[d0+ idj(V'T)’],
k=0 j=1
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respectively because of (9.21)

@ n 1 i
9.23 T < r"[d+ d; ——- .(Dr)f]
(0-23) o kzo ° ,Zx -1y
where
D=M,B".

The first series is convergent for every 7>1, while at n sufficiently
great the second is convergent for every D and <. That means that the neces-
sary condition for the convergence of series (2.11) is 7<(1, respectively

because of (9.16)

v
(9.24) A<—]—v—2.

It remains still open the question of extending the domain of the
convergence outside of v< 1, with respect that it is very difficult and even
impossible to obtain the general analytical lawfulness for coefficients Fy, @ g4y, ..
(k=0,1,...) in power series and to show that they make diminishing sequ-
ences of functions. Therefore, this question should be observed from case to

case.
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