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1. Let
n (0,<)

be any ordered set; it is known that the set (1) is imbeddable into a
complete lattice L(0O) (Mac Neille; cf. Birkhoff, p. 58; Szsz p. 73). In general
case, the cardinality kO of O is less than the cardinality k L(0) of L (0);
now the question arises as whether the imbedding of (0,<) into a lattice
(Or,<pg) is feasible under the condition that O and Oy be of same cardinality.

We are going to prove that for any infinite. O the answer is by affir-
mative; for any finite ordered set (0,<) which is not a lattice the answer is
by negative.

2. Let us consider the following problem:

Problem. Let n be any cardinal number; consider the minimal number m (n)
such that every ordered set of a cardinality n be isomorph to a subset of a
lattice of cardinality < m (n).

The existence of m(n) for any given n is obvious: the question is to
determine m(n) as function of n. E. g. m(0)=0,m(1)=1 (the empty set as
well as every one-point set are considered as lattices); m(2)=4.

3. Theorem. For every cardinal number n>1 one has
n m(n)<2”.
If n>¥,, then m(n)=n.

In particular, every infinite ordered set (0,<) is imbeddable into a lattice
(Ogr, <g) of the cardinality kO.

4 Proof. 4.1. The first step in the transition (0, <) — (Og,<g) consists
to adjoin to O: a first member, 0, provided it is not present in (0,<) and
to adjoin a last member, 1, provided it is not present in (0,<).

The relation (1) is an immediate consequence of the forming of L (0)
by means of subsets of O, all these subsets forming the partitive set PO of
cardinality 2.

4.2 As to the existence of (Og, <z), at first we define O, as the family
of all the sets of the form

0 1X,(XS0,kX<¥,)



166 Puro Kurepa

where 1 X={y;y€0,X<y}
0 X ={x; x € 0,2< X}
01X=0(1X).
Then (0,;S)is a lattice.

4.3 If for every x € O we substitute x for O (.,x) and <z for S, then
0, yields a set, say Og and Og20; the set (0,<) is imbedded in (Og,<g).

4.4 l-extension of (0, <). Moreover, the set (O, <g) is an l-extension
of (0, <) in the sense that not only Ox20 and

a<b in O > a<zb in O
but also that for {a, b} SO one has
infy {a,b} € 0 > infy {a,b}=infor {a,b},
sup, {a,b} € 0 = sup, {a,b}=supo, {a,b).
4.5. The cardinality of O, is such that
k0<kO0,<k0+k0>+k03+ ...

4.6. Consequently, assuming the axiom of choice one has kO"=k O for
every natural integer r and every infinite O. Therefore kK O,=k0 and also
k0gr=k 0 because k0,=k Og.

4.7. For another proof of the theorem 3 cf. section 8.
5. Extension of the validity of relations inf {a,b} € O and sup {a,b} € O.

5.1 Sometimes it is interesting to imbed (O, <) in a (minimal) l-extension
(M, ) of (O, <) in such a way that for a given

set Es(g)={x;xso,k,\':2}, one has

xC E>infyx& M or
x € E = supprx € Mor both.

In general, the ordered set (M,p) is not a lattice. The simplest case is
that E consists of a single 2-point-subset of O.

5.2. We are going to indicate a construction of M= M (E) leaving aside
the question whether the construction of M (E) is as economical as possible
in the sense to introduce in M (E) as many comparable elements as possible.

5.3. Lemma. Let (0, <) be an ordered set; let {a,b} < O and
i=inf {a,b} €0;

let (M, ) be an ordered set extending (0, <) by adjoining to the set O a single
member x € O.

Then we have the following equivalence (1)< (2) where
(1) i|l.x,? xp {a,b}

) i |[p x means that neither ipx nor xpi (i. e. that /,x are ¢ incomparable
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2) infur{a, b} € M.

The implication (1) = (2) is obvious, because (1) and the relation i € O
imply that the set of all predecessors of a,b in (M, p) consists of x and of
O[i,.) and has 2 initial points i, x.

Conversely, (2) = (1). At first, from (2) we infer that

3) M(,alaM(,b}=0(.,a]ln0(.,b]U{x} and thus xp{a,b}.

One has neither x¢i nor ipx because these relations would imply that
infys {a,b} equals x and i respectively, in contradiction with (2).

The dual of 5.3 reads as follows.

54. Lemma. Let (O,<<) be an ordered set; let (M,p) be an order
extension of (0, <) obtained from (0, <) by adjoining a single point y; if {a b} < O
and s=sup, {a,b} € O, then the following conditions (4), (5) are logically equivalent:

4) sy, {a, b}y
(5) supas{a, b} &€ M.

5.5. Lemma. Let (0, <) be any ordered set; if #,v& Oand if inf,
{u,v} does not exist, let x=x (u,v) be an object which is neither a member
nor a part of O: let locate the object x immediately before @ and before b
and immediately after the set

¢)) O (.,u]nO(.,v]; in particular u=x—v;
for any other point ¢ of O we consider ¢, x to be incomparable.

If the set (1) is empty we define x to follow to every point of (0, <).
The ordered set (M=0U {x}; <') so obtained is an extension of the given
ordered set (O, <) leaving invariant supremum as well as infimum of any
2-point-subset {a, b} of O; i. e. if {a,b}<S O, then

2 i=infy {a, b} € O = inf, {a, b} =infy {a, b}:
3 §=supgp {a,b} € O = supy{a, b} =supy {a, b}.
Let us prove the implication (2).

First infar{a, b} exists and is a member t of M; in opposite case, the
implication (2) = (1) in the lemma 5.3. would yield

4 xp{a,b} and i, x.

In particular, xp {a,b} implies u < {a,b},v< {a,b} and from here, by
the definition of i=inf, {a,b}, one would have {u,v} < i, and from here
x ¢ i, contradicting the second relation of (4).

Hence t& O. Therefore ipr. We say that t < O i. e. i=t and that (2)
holds. In opposite case, one would have r=ux, thus ipx, and i< {u,v}. Now
x (=t)=infy {a, b}; therefore xp {a,b} and u < {a,b},v < {a,b}; thus {u,v} < i
and xpi, contradicting ipx,i# x.
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Analogously, (3) is holding.

First, supsr{a, b} exists and is a member z of M. Otherwise one would
apply the implication (5) => (4) in the lemma 5.4 and consequently one would have

(%) s [lo X, {a, b} o x.

The last relation implies {a,b} < u,{a,b} < v, hence by the definition of
§=supy {a,b}, s < {u,v} and therefore spx, contradicting (5).

On the other hand, z€ M = zps. If moreover z € O, then necessarily
s=z and the requested implication (3) is proved. Now, suppose by contradiction
that zE M\ O, i. e. z=x. Thenxps, x#sand {u,v} <s. Further, x=2z=
=sup,s {a, b} implies {a, b} p x; from here by the definition of p we have {a,b}
< u,{a,b} <v and therefore also s < {u,v}, hence s < x contradicting the
assumption xps, x 7~ s.

Since the last sentence in the lemma is obvious, the proof of the lemma
is completed.

The dual of the lemma 5.5. reads as follows.

56. Lemma. Let (O, <) be any ordered set; if {u, v}S O and
supp {u, v} & O, then adjoining to O an object y =y (u, v) which is neither a mem-
ber nor a part of 0 and defining in M =O0U{y} the extension p of < in such a
way that ut=y=vt+ and that every member of the set O [u,.)n O[v,.) precedes
immediately to y, while else y is incomparable to every other point of O then
for any {a,b} SO one has the implications:

info {a, b} E O = inf(o,<) {a, b} = inf(M;) {a, b},
supo {a, b} € O = supo,<) {a, b} = suP1:e) {4, b}

Y =SUParp) {1, v}
The proof runs dually to that of the Lemma 5.5.

6. Theorem. Let (O, <) be any ordered set and E < (3) any set of
2-point-subsets of O; there exists an ordered set (O (E), < (E)) extending the
ordered set (0, <) such that {u,v} € E = infoy, {u,v} € O (E): moreover, if
k 0 < N,, then k0=Fk O (E).

And dually for the supremum for every {x,y} € F where F 5(5’) is given.
Proof. Let
s Gy vl 5 2+ 5 (L F)

be any normal well-order of E; for every o<V we have
ay={aqp, a4} € O, Ao 7 dey-
6.1. We define

o iE={(i,x);xEE};i is the first character of the word infimum; s is the
initial character of supremum; obviously, the sets E,iE, are disjoint.

6.2. Let us consider the following ordered sets

(Oleps < cpl) (CP<‘F)
extending (0, <).
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If inf a, € (0, <) we put (049, <;0)=1(0, <); if
inf a, < (0, <), then 0,,=0U {ia,} and we define <, by

intercalling in (0, <) the element (i q,) between a, and the set

4 0(., a00] N O (., ag]-
By the lemma 5.5, in the set (04, <o) the infimum of a,= {ag, ag}

exists: if sup {x,y} exists in (0,<) so also in (0, <,,) and is the same.
6.3. One defines (0,,, < ;) substituting in the foregoing consideration 5.5, 5.6

00, <> <y qg—ay; if
0<y<WY and if the set (0,3, <,5) is defined for every P <y, we define
also (0,4, <,y ) as previously on substituting

0—->U0 , <->U<, agy—a,
B<y 1P B<y 1y

By definition
x(U <,p) y means x <5y for at least one B<y.
B<y

6.4. The ordered set (0,,, <,,) being defined for every ¢ < ¥ we define
(0, <)=(0,,<,) def (UO,q, sup <yq)-
= eo<¢ o<¢

6.5. The ordered set (0,,<,) is an extension of (0,<) and one sees readily
that for {x, y} € E one has
inf {x,y} € (0,<y);
moreover, if x,y € O have its infimum in (0,<) so do they the same in
(0,,<,) with the same value.
6.6. One has k0, =k 0 because k 0<<k 0,<k0 ki E<
kO+k0*=kO0.

The proof for the dual form runs analogously on considering instead of
the set i E the set s E=(sx),x € F; s is the initial of the word supremum.

Of course, the sets 0, i E, s E are pairwise disjoint.
7. Theorem. Let (0,<) be any ordered set and ES(3), F<(3); there

exists an l-order extension (M,<jy) of (0,<) such that
e € E=infy, e € (M,<g) and fE F = suppy fE (M, <p).

The theorem 7 is an easy consequence of the theorem 6 for E=F=(3).

8. Another proof of the theorem 3.

Put in the foregoing proof E=(3)=F.
Then putting g(0,<)=g; (0,<) and defining

g(g- (0, <) = &1+r 0,<)= (01+n <i+r)
the requested ordered set (0g,< y) is defined in the following way:
0R=U05 <R=U<r’ (O<r<0)).

r<r r
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One proves readily that the ordered set (Og,< ) is a lattice of cardinality
k0 and that (Og, <g) is an l-extension of (0,<).
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