IMBEDDING OF ORDERED SETS IN MINIMAL LATTICES

Đuro Kurepa

(Communicated 4. February 1966)

1. Let

$$(0,<)$$

be any ordered set; it is known that the set (1) is imbeddable into a complete lattice L(O) (Mac Neille; cf. Birkhoff, p. 58; Szász p. 73). In general case, the cardinality kO of O is less than the cardinality kL(O) of L(O); now the question arises as whether the imbedding of (O,<) into a lattice $(O_R,<_R)$ is feasible under the condition that O and O_R be of same cardinality.

We are going to prove that for any infinite O the answer is by affirmative; for any finite ordered set (0,<) which is not a lattice the answer is by negative.

2. Let us consider the following problem:

Problem. Let n be any cardinal number; consider the minimal number m (n) such that every ordered set of a cardinality n be isomorph to a subset of a lattice of cardinality $\leq m(n)$.

The existence of m(n) for any given n is obvious: the question is to determine m(n) as function of n. E. g. m(0) = 0, m(1) = 1 (the empty set as well as every one-point set are considered as lattices); m(2) = 4.

3. Theorem. For every cardinal number n>1 one has

$$(1) m(n) \leqslant 2^n.$$

If $n \geqslant \aleph_0$, then m(n) = n.

In particular, every infinite ordered set (0,<) is imbeddable into a lattice $(O_R,<_R)$ of the cardinality k O.

4 Proof. 4.1. The first step in the transition $(O,<) \rightarrow (O_R,<_R)$ consists to adjoin to O: a first member, 0, provided it is not present in (O,<) and to adjoin a last member, 1, provided it is not present in (O,<).

The relation (1) is an immediate consequence of the forming of L(O) by means of subsets of O, all these subsets forming the partitive set PO of cardinality 2^n .

4.2 As to the existence of $(O_R, <_R)$, at first we define O_a as the family of all the sets of the form

$$0 1X, (X \subseteq O, kX < \aleph_o)$$

where 1
$$X = \{y; y \in O, X < y\}$$

0 $X = \{x; x \in O, x < X\}$
0 1 $X = 0$ (1 X).

Then $(O_a; \subseteq)$ is a lattice.

4.3 If for every $x \in O$ we substitute x for O (.,x) and $<_R$ for \subseteq , then O_a yields a set, say O_R and $O_R \supseteq O$; the set (O,<) is imbedded in $(O_R,<_R)$.

4.4 *l-extension* of (O, <). Moreover, the set $(O_R, <_R)$ is an *l-extension* of (O, <) in the sense that not only $O_R \supseteq O$ and

$$a \le b$$
 in $O \Rightarrow a \le R b$ in O_R

but also that for $\{a, b\} \subseteq O$ one has

$$\inf_0 \{a, b\} \in O \Rightarrow \inf_0 \{a, b\} = \inf_{R} \{a, b\},$$

 $\sup_0 \{a, b\} \in O \Rightarrow \sup_0 \{a, b\} = \sup_{R} \{a, b\}.$

4.5. The cardinality of O_a is such that

$$k \ 0 \le k \ 0_a \le k \ 0 + k \ 0^2 + k \ 0^3 + \dots$$

- 4.6. Consequently, assuming the axiom of choice one has $k O^r = k O$ for every natural integer r and every infinite O. Therefore $k O_a = k O$ and also $k O_R = k O$ because $k O_a = k O_R$.
 - 4.7. For another proof of the theorem 3 cf. section 8.
 - 5. Extension of the validity of relations inf $\{a,b\} \in O$ and sup $\{a,b\} \in O$.
- 5.1 Sometimes it is interesting to imbed (O, <) in a (minimal) 1-extension (M, ρ) of (O, <) in such a way that for a given

set
$$E \subseteq \binom{0}{2} = \{X; X \subseteq O, k \mid X = 2\}$$
, one has $x \in E \Rightarrow \inf_{M} x \in M$ or $x \in E \Rightarrow \sup_{M} x \in M$ or both.

In general, the ordered set (M, ρ) is not a lattice. The simplest case is that E consists of a single 2-point-subset of O.

- 5.2. We are going to indicate a construction of M = M(E) leaving aside the question whether the construction of M(E) is as economical as possible in the sense to introduce in M(E) as many comparable elements as possible.
 - 5.3. Lemma. Let (0, <) be an ordered set; let $\{a, b\} \subseteq O$ and

$$i = \inf \{a, b\} \subseteq 0;$$

let (M, ρ) be an ordered set extending (0, <) by adjoining to the set O a single member $x \in O$.

Then we have the following equivalence $(1) \Leftrightarrow (2)$ where

(1)
$$i \parallel_{\rho} x,^{1} x \rho \{a, b\}$$

¹⁾ $i \mid \mid \rho x$ means that neither $i \rho x$ nor $x \rho i$ (i. e. that i, x are ρ incomparable

(2)
$$inf_M\{a,b\} \in M$$
.

The implication $(1) \Rightarrow (2)$ is obvious, because (1) and the relation $i \in O$ imply that the set of all predecessors of a, b in (M, ρ) consists of x and of O[i, .) and has 2 initial points i, x.

Conversely, $(2) \Rightarrow (1)$. At first, from (2) we infer that

(3)
$$M(.,a] \cap M(.,b] = O(.,a] \cap O(.,b] \cup \{x\}$$
 and thus $x \circ \{a,b\}$.

One has neither $x \rho i$ nor $i \rho x$ because these relations would imply that $\inf_{M} \{a, b\}$ equals x and i respectively, in contradiction with (2).

The dual of 5.3 reads as follows.

- 5.4. Lemma. Let (O, <) be an ordered set; let (M, ρ) be an order extension of (0, <) obtained from (0, <) by adjoining a single point y; if $\{a \ b\} \subseteq O$ and $s = \sup_{\{a,b\} \in O\}$, then the following conditions (4), (5) are logically equivalent:
 - (4) $s \mid \langle y, \{a, b\} \rangle y$
 - (5) $\sup_{M} \{a, b\} \in M.$
- 5.5. Lemma. Let (O, <) be any ordered set; if $u, v \in O$ and if $\inf_0 \{u, v\}$ does not exist, let x = x (u, v) be an object which is neither a member nor a part of O: let locate the object x immediately before a and before b and immediately after the set
 - (1) $O(., u] \cap O(., v]$; in particular u = x = v;

for any other point t of O we consider t, x to be incomparable.

If the set (1) is empty we define x to follow to every point of (0, <). The ordered set $(M = O \cup \{x\}; <')$ so obtained is an extension of the given ordered set (O, <) leaving invariant supremum as well as infimum of any 2-point-subset $\{a, b\}$ of O; i. e. if $\{a, b\} \subseteq O$, then

(2)
$$i = \inf_{O} \{a, b\} \in O \Rightarrow \inf_{O} \{a, b\} = \inf_{M} \{a, b\}:$$

$$(3) s = \sup_{O} \{a, b\} \subseteq O \Rightarrow \sup_{M} \{a, b\} = \sup_{M} \{a, b\}.$$

Let us prove the implication (2).

First $\inf_{M} \{a, b\}$ exists and is a member t of M; in opposite case, the implication $(2) \Rightarrow (1)$ in the lemma 5.3. would yield

(4)
$$x \rho \{a, b\}$$
 and $i \parallel_{\rho} x$.

In particular, $x \rho \{a, b\}$ implies $u < \{a, b\}, v < \{a, b\}$ and from here, by the definition of $i = \inf_O \{a, b\}$, one would have $\{u, v\} < i$, and from here $x \rho i$, contradicting the second relation of (4).

Hence $t \in O$. Therefore $i \rho t$. We say that $t \in O$ i. e. i = t and that (2) holds. In opposite case, one would have t = x, thus $i \rho x$, and $i < \{u, v\}$. Now $x(=t) = \inf_M \{a, b\}$; therefore $x \rho \{a, b\}$ and $u < \{a, b\}, v < \{a, b\}$; thus $\{u, v\} < i$ and $x \rho i$, contradicting $i \rho x$, $i \neq x$.

Analogously, (3) is holding.

First, $\sup_{M} \{a, b\}$ exists and is a member z of M. Otherwise one would apply the implication (5) \Rightarrow (4) in the lemma 5.4 and consequently one would have

(5)
$$s \mid_{\rho} x$$
, $\{a,b\} \rho x$.

The last relation implies $\{a, b\} \le u, \{a, b\} \le v$, hence by the definition of $s = \sup_{\alpha} \{a, b\}, s \le \{u, v\}$ and therefore $s \rho x$, contradicting (5).

On the other hand, $z \in M \Rightarrow z \rho s$. If moreover $z \in O$, then necessarily s = z and the requested implication (3) is proved. Now, suppose by contradiction that $z \in M \setminus O$, i. e. z = x. Then $x \rho s$, $x \neq s$ and $\{u, v\} \leqslant s$. Further, $x = z = \sup_M \{a, b\}$ implies $\{a, b\} \rho x$; from here by the definition of ρ we have $\{a, b\} \leqslant u, \{a, b\} \leqslant v$ and therefore also $s \leqslant \{u, v\}$, hence $s \leqslant x$ contradicting the assumption $x \rho s$, $x \neq s$.

Since the last sentence in the lemma is obvious, the proof of the lemma is completed.

The dual of the lemma 5.5, reads as follows.

5.6. Lemma. Let (O, <) be any ordered set; if $\{u, v\} \subseteq O$ and $\sup_O \{u, v\} \notin O$, then adjoining to O an object y = y(u, v) which is neither a member nor a part of 0 and defining in $M = O \cup \{y\}$ the extension ρ of < in such a way that $u^+ = y = v^+$ and that every member of the set $O[u, \cdot) \cap O[v, \cdot)$ precedes immediately to y, while else y is incomparable to every other point of O then for any $\{a, b\} \subseteq O$ one has the implications:

$$\inf_{O} \{a, b\} \in O \Rightarrow \inf_{(O, <)} \{a, b\} = \inf_{(M\varphi)} \{a, b\},$$

$$\sup_{O} \{a, b\} \in O \Rightarrow \sup_{(O, \leqslant)} \{a, b\} = \sup_{(M, \varphi)} \{a, b\},$$

$$y = \sup_{(M, \varphi)} \{u, v\}.$$

The proof runs dually to that of the Lemma 5.5.

6. Theorem. Let (O, \leqslant) be any ordered set and $E \leqslant \binom{O}{2}$ any set of 2-point-subsets of O; there exists an ordered set $(O(E), \leqslant(E))$ extending the ordered set (O, \leqslant) such that $\{u, v\} \in E \Rightarrow \inf_{O(E)} \{u, v\} \in O(E)$: moreover, if $k \ 0 \leqslant \aleph_0$, then $k \ 0 = k \ 0(E)$.

And dually for the supremum for every $\{x,y\} \in F$ where $F \subseteq \binom{0}{2}$ is given. Proof. Let

$$a_0, a_1, \ldots a_{\varphi}, \ldots (\varphi < \Psi)$$

be any normal well-order of E; for every $\varphi < \Psi$ we have

$$a_{\varphi} = \{a_{\varphi 0}, a_{\varphi 1}\} \subseteq O, \qquad a_{\varphi 0} \neq a_{\varphi 1}.$$

6.1. We define

 $iE = \{(i, x); x \in E\}; i$ is the first character of the word infimum; s is the initial character of supremum; obviously, the sets E, iE, are disjoint.

6.2. Let us consider the following ordered sets

$$(0_{1\varphi}, \leqslant_{\varphi 1}) (\varphi < \Psi)$$

extending (0, <).

If inf
$$a_0 \in (0, <)$$
 we put $(0_{10}, <_{10}) = (0, <)$; if inf $a_0 \in (0, <)$, then $0_{10} = 0 \cup \{i \ a_0\}$ and we define $<_1$ by

intercalling in $(0, \leq)$ the element $(i a_0)$ between a_0 and the set

(4)
$$0(., a_{00}] \cap O(., a_{01}].$$

By the lemma 5.5, in the set $(0_{10}, \le_{10})$ the infimum of $a_0 = \{a_{00}, a_{01}\}$ exists: if sup $\{x, y\}$ exists in (0, <) so also in $(0_{10}, \le_{10})$ and is the same. 6.3. One defines $(0_{11}, \le_{11})$ substituting in the foregoing consideration 5.5, 5.6

$$0 \to 0_{10}, \le \to \le_{10}, a_0 \to a_1$$
; if

 $0<\gamma<\Psi$ and if the set $(0_{1\beta},\leqslant_{1\beta})$ is defined for every $\beta<\gamma$, we define also $(0_{1\gamma},\leqslant_{1\gamma})$ as previously on substituting

$$O \rightarrow \bigcup O$$
, $< \rightarrow U <$, $a_0 \rightarrow a_\beta$,

By definition

$$x(U \leqslant_{1\beta}) y$$
 means $x \leqslant_{1\beta} y$ for at least one $\beta < \gamma$.

6.4. The ordered set $(0_{1\varphi}, \leqslant_{1\varphi})$ being defined for every $\varphi < \Psi$ we define

$$g(O,<)=(0_1,\leqslant_1) \stackrel{\mathrm{def}}{=\!\!\!=} (UO_{1\varphi}, \sup_{\varphi<\psi}\leqslant_{1\varphi}).$$

6.5. The ordered set $(0_1, \leq_1)$ is an extension of $(0, \leq)$ and one sees readily that for $\{x, y\} \in E$ one has

inf
$$\{x, y\} \in (0_1, \leq_1);$$

moreover, if $x, y \in O$ have its infimum in $(0, \leq)$ so do they the same in $(0, \leq)$ with the same value.

6.6. One has $k \mid 0_1 = k \mid 0$ because $k \mid 0 \le k \mid 0_1 \le k \mid 0$ k i $E \le k \mid 0$

$$k \cdot 0 + k \cdot 0^2 = k \cdot 0$$
.

The proof for the dual form runs analogously on considering instead of the set iE the set $sE=(sx), x \in F$; s is the initial of the word supremum.

Of course, the sets 0, iE, sE are pairwise disjoint.

7. Theorem. Let $(0, \leq)$ be any ordered set and $E \subseteq \binom{0}{2}$, $F \subseteq \binom{0}{2}$; there exists an 1-order extension (M, \leq_R) of $(0, \leq)$ such that

$$e \in E \Rightarrow \inf_{M} e \in (M, \leq_{R}) \text{ and } f \in F \Rightarrow \sup_{M} f \in (M, \leq_{R}).$$

The theorem 7 is an easy consequence of the theorem 6 for $E = F = \binom{0}{2}$. 8. Another proof of the theorem 3.

Put in the foregoing proof $E = \binom{0}{2} = F$.

Then putting $g(O, \leqslant) = g_1(O, <)$ and defining

$$g(g_r(O, \leq)) = g_{1+r}(O, \leq) = (0_{1+r}, \leq_{1+r})$$

the requested ordered set $(0_R, \leq_R)$ is defined in the following way:

$$0_R = UO, \leqslant_R = U \leqslant_r, \qquad (0 < r < \omega).$$

One proves readily that the ordered set (O_R, \leqslant_R) is a lattice of cardinality $k \ 0$ and that (O_R, \leqslant_R) is an 1-extension of (O, \leqslant) .

BIBLIOGRAPHY

Birkhoff, G., Lattice Theory, Amer. Math. Soc., New York, 1948, 14+284. Szász, Gábor, Introduction to Lattice Theory, Budapest, 1963, 230.