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This paper represents a continuation of the paper [2], and is dedicated
to questions of existence and uniqueness of solutions of non-linear, in the
sense of presence of inertial terms, classical Navier-Stokes equations on
a n-dimensional Riemannian manifold ®. The problem for consideration is
formulated in Chapter 1. In Chapter 2 principally are considered the linea-
rized Navier-Stokes equations on . Namely, itisshown a way for the intro-
duction of potentials of distributions. In the same chapter is given also the
construction of Green’s tensor. Chapter 3 is dedicated to the consideration
of the non-linear Navier-Stokes equations on %, using the Green’s tensor.

In this paper for the time being the gene-alized solutions of quoted equ-
ations will not be considered.
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1. Introduction

Let exist on a connected domain D with the boundary B of an orientable,
n-dimensional C* Riemannian manifold f with the metric ds?=g;dx'dx’/ and
on the complement Dy of Dto a sphere S of the infinitely large radius R,
the following partial equations, given in the system of local coordinates

(1.1) okl = Fimlp, gl vAv,
P

(1.2) vl =0,

with the conditions

(1.3) (¥)s =17,

(1.4) (v")\uR—> 0, when R—
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and a condition that there is no streaming across 3B, i. e.
(1.5) [ fidB;=0
b

It is the purpose of this paper to find unique solutions of the equations
(1.1)—(1.2), ¥"(x) and p(x) in the class of infinitely differentiable functions,
for the conditions (1.3)—(1.5), considering that Fi(x) and fi(x) belong to the
same class.

All notations have been taken over from my previous paper [2].

2. The linearized Navier-Stokes equations

Since, we have al-cady studied in details in the paper [2] questions of
the existence and of the uniqueness of solutions of the linearized Navier-
Stokes equations, therefore, we shall here principally consider only the way

for introduction of potentials of distributions. Let #, ¢/ and 9, £ be conti-
nuous C? respectively C! tensor functions on the closure U and let # and

£ have compact supports, and let us form the identity.

2.1) J Wk 0% u)— v, (‘rikvi)]d@=£ (1% 1 — 1% 0) d Ty,
where ti= — pgli4 2u DV, Di= —;—(fu"’f-f—z)f"),
2.2) 1=qgi+2uDY, DV = Y @+ ubt).

We assume that #7=¢/(v) and 1 =i (u), and instead of u and g we
choose the fundamental solutions o and p*, then

(2.3) tik (vi) = — p gik 1 N CLALER Y
is a fundamental tensor satisfying the equation

(2.4) £k (), , =0,
respectively

(2.5) —pl g+ Aok =0,

to which we need to associate also the equation

(2.6) o= 0.

It is evidently that the relations (3.1.4)—(3.1.8) from the paper [2] are valid-

Let & be open set with the regular closed boundary §§ such that #*(2/(x,8))
is defined for arbitrary x,& € (U ). We describe a small geodesic sphere
S (¢) with the surface U (e) and with the radius ¢ around the point x&® and
apply the identity (2.1) to the domain

®.=@—-S(),
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and afterwards we examine the behaviour of iniegrals at ¢ — 0, in the same
way as in the section 2.3 of the paper [2], taking (3.1) [2] and (2.4) and get

@) () =ef 0/ (5B F @ 46 +[ @ (x,8)5 @) T~ [ 0@ v/, ) a5
Applying the operator A to (2.7) and taking (2.3.28) and (3.2) from [2],
(2.5) and that

A, 1 (0% (x. €)= —2p' (x, EY,
we obtain

28) pX)=[p(x.OF E)dG—2p [ vp' (x,8) v/(E) dFi— [ ¥* (2 (E)) p; (x. E) AT

Thus we can conclude that at solving our problem it is necessary to intro-
duce potentials of following distributions in & and on , namely of

a) volume distributions

Vo (x,f)=[ v (x,£) f; () 46,
2.9 o

Vo (%, )= @f P (x,5) fi () dG;

b) single distributions

IO, (x. §) = [0 (x, E) Y (§) 5,
(2.10) ¥

I, (x,§) = 4 PF(E) Y B) A

c) double distributions

I (x,0) = [ KV (x,E) @; () 4,
(2.11) &

0, (x, ) = [ K (=89 B4,
where
Kii (x,E) = l(@* (x, E) mi,  Ki(x,E) =y P (x, E) 0,

In above equations fi€ C*(®),{y' € C*(F) and ¢ € C*(F) are den-
sities of given potentials. We assume them as continuous functions. The
potential of a single distribution IT, is continuous almost everywhere in &
including also §, as it becomes on {§ equal to zero. We have already spoken
about the potential of a double distribution in the paper [2], and therefore,
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for the determination of the density field ¢' we can immediately write down
the integral equations

=l

L) = é-@ @+ [ K9G ey () 5,
(2.12)

M, (8) = ¢ ©)+ [KY G e ) dF,

ot
2
for every £ € §. N ﬁ; and _ﬁi, represent inside and outside boundary values on
& and are continuous C” functions of £ € {

We can also consider the second boundary problem, together with the
first one, at which on {§ is imposed a field

(2.13) 7 (@) n)z =¢', i=2,...,1

To determine the density field {/, we write the stress tensor ¥ for the
potential I1,. From (2.2) and (2.10) it follows

(2.14) () =/ 11 (0% g A5

From here it is obvious that 7/ (II,) has the same form, and therefore, also

qualities as M. . Hence, it is easy to write the integral equations for the
determination of {;, namely

) oy = 41 0 [ 1 B e () 0
(2.15)
)= = YO+ 0 En) b () 45,

for every § €.

If /i is a vector function from the class ¥ (&) (see [2]) then we can
give the following estimations for potentials of volume distributions for

| Vo (%) | <Ky | f]] 255
|V () |<SKy |1 ] 2 o

bounded . But, in order that the integrals (2.9) converge absolutely
and represent continuous functions, when the region & is unbounded, it is
necessary also a condition of vanishing of the field f* at infinity, namely the
requirement that f* has a compact support. For details about properties of
these integrals see: Calderon-Zygmund {1}, Mikhlin [2] and Sobolev [3], there-
fore, we shall not stop on them.
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2.1 The Green’s tensor

In this section we shall establish the existence of the Green’s tensor
for the linearized Navier-Stokes equations on a set &, namely the existence
of a tensor

(2.1.1) G (x,8), (x,£€6),
with following properties:

i) It belongs to the class C* (&).
ii) For a given field b(x,£) € C”(®) it satisfies the equations

* AGI—-b=0,
(2.1.2) )
G‘l,j=0,
on &.
iii) On the boundary § of a set & it becomes equal to zero, i. e.
(2.1.3) GV (x,8)=0,

for x € and any point £ € G.

iv) If T (x,£) — 0 then it exhibits the principal singularity characterized
by the representation of the fundamental solution, namely

(2.1.4) r-»U+logl-V+ W,

where U, V, and W are regular functions of x in a vicinity of &.

v) Inside & it is non-negative.
vi) It is a symmetrical tensor.

The existence of the Green’s tensor we shall establish by the following

Theorem. The tensor function

(2.1.5) G (x,E) =v (x,&)— c&f Vi 2 (x, Q) ol (5, ) d F,
with .
(2.1.6) b (x,8)=p (x,)— g Vi P (%, Q) @, (8, &) d T,

where v (x,%) and p'(x,t) are the fundamental solutions-fundamental tensors
defined by (3.1.4)—(3.1.8) from the paper [2], and

(2.1.7) Wk G, E)=v* 8+ S WK €5,
v=1

K& (5= 4 K& Cof (1,8 d
K@y =Kk=y,o*n; K Cw=] Kb EGE Kb i@ d3,

- s I 5 ¥ L
at which A= +2 and v/= +2v7in the case D respectively Dy, satisfies all
before mentioned conditions i)—vi), and therefore, it represents the Green’s tensor.
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Proof. To prove the above theorem we observe two fields
(2.18) Gij(x’ Z)zvij(x’ E.»)—'hij(xy g),
(2.1.9) b (x,&)=p' (x,£)—a' (x, §),

where vV and p' are the fundamental tensors fields, and 47 and &' are regular
fields on &, which are found as solutions of the following system of partial
equations

(2.1.10) wA i —ghi=0,
(2.1.11) hil,; =0,

for the condition

(2.1.12) W (x, &) e3=0"(x, &), e

Thus, to find #Y and &' we need to solve the Dirichlet’s problem in
the same way as in the section 3.1 of the paper [2]. By introducing the so-
lutions (2.1.10)—(2.1.12) into (2.1.8)—(2.1.9) we easily find relations (2.1.5)
—(2.1.7). On the proof of the convergence of the series (2.1.7) as also on the
question of the existence and the uniqueness of solutions, we shall not stop
because it is completely related to the proof and the same questions are con-
sidered in the section 3.1 of [2]. Since, v (x,§) € C* (&) then also AV (x,&)
and GY(x,&) belong to the same class. From (2.1.12) it follows that G¥ (x,£) =0
atx € Fand £ € ®. The singularity of G¥ (x, £) is given by singularity of a fundamen-
tal tensor, as AV (x, %) is a regular function in &. Moreover, since G¥ (x,£) - + o
when T'(x,£)—> 0, and since the maximum principle shows that GY cannot
have a negative minimum in the interior of &, its minimum must occur on
the boundary . Since on { is fulfilled the condition (2.1.3) we have

GV (x,8) > 0,

inside &. The symmetry property follows from the symmetry of the funda-
mental solution. In this way the theorem is proved.

3. The non-linear Navier-Stokes equations

We shall use the Green’s tensor that is established in the preceding
section and put up the following

Theorem. The first boundary problem for the equations (1.1) and (1.2) is
uniquely solvable in the class C® on domains D and Dy respectively, in dependen-
ce if the solutions of the linearized equations are unique or not, on the same domains.
The completely continuous solutions are given in the following form

(3.1) V(X)) =7, () —p [G(xE) ) v/, €)dE,

(3.2) vi ()=, () —p [ G (x,E)ok (v () dG,

4]

(3.3) PX)=poy(X)— [ b (x, )2k (§) v, (8) 4 &;
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respectively

(3.4) WmiéFW%ﬁ, %uhéfﬂW@An
oy ()= [ S G Dok, D), _, (B 46,

(3.5) e

. p : 5 »
Yk = [ 3 G (5B,  (€)dO,
0

@ (p—a) s
o g=

where ‘vi,,) (x) and p(,,()x ) represent the solutions of the linearized Navier-Stokes equ-
ations for the conditions (1.3)—(1.5), and accordingly to the Riemannian metric,
d® represents the measure, namely d® = (g (x))"z dx'- - - dx".

Proof. Let & be a bounded region. Let us first prove that (3.1) and
(3.3) satisfy the equations (1.1) and (1.2). If we apply the operator A to (3.1),
and if (3.3) once covariant differenciate, all in the same way as in the section
(2.3) of [2], and taking into account the symmetry properties of Green’s tensor,

then (2.1.2), and also that véo) and p,, satisfy the linearized equations

A vl =Py =—e F',

0,

i -
Yoy ,i —

it is easy to verify that equations (1.1) and (1.2) are satisfied.

Since, the right side of (3.1) contains unknown @' and ¢';, then by cova-
rian differentiation of it, we obtain the equation (3.2). These two equations

represent n(n-+ 1) integral equations for the determination of unknown v, 2’
€ C” (). If, we suppose solutions of integral equations in the form of series
(3.4), then introducing them into (3.1) and (3.2), we obtain recurrent formulae (3.5).

Now, we shall prove the convergence of the series (3.4). Let us consider
a space C(®) of real-valued continuous tensor functions f(x) on the set &
normed by

1fil=sup [ f(x)].
xe @

Then from (3.4) it follows

]

(3.6) 0 (x) < |pl” H,, Vo< S |plPH,

B
where
sup | v, (x) | < H,, sup |y o, (x) | < H;
xc® xe6

and are valid the recurrent relations

P
I'U(p+1) (x) I <G z Hq }I(rq)’

q=0

)4
[ V %+1 (x) ' <G Z Hq H(p—q)’

q=0

11 Publications de I’ Institut Mathématique
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where
G=sup [|G(x,E)|dE.

xXEVY

From (3.1) we readily obtain

o (x)|< H,+p G H?,
respectively

3.7 H<H,+pG H?

This inequality enables us to conclude that series (3.6) will be convergent on
C(®) if is fulfilled the condition

(3.8) 40G H,<1.

The convergence of (3.6) as a series of elements in the Banach space C(®)
means that (3.4) are uniformly convergent on ¥; thus, the function ¢ and its
first covariant derivative are continuous tensor functions of x on &.

The condition (3.8) will impose a limitation upon the Re-number, namely

(3.9) Ro<—t

where G=AL, H,=BV, and A and B are characteristic length, for instance,
a diameter of the region , and any characteristic velocity of the linearized
Navier-Stokes equations respectively.

For the uniqueness proof we shall use the maximum principle. Let in a
bounded region &,7'and wi be solutions of the stated problem, which possess
the same boundary values (v%)y =(w)s =f7, then their difference #' on B has
the value (#')s =0. By using the maximum principle it may be seen that the
function u inside & cannot be either larger or less of the boundary value;
thus, it is equal to zero, respectively o' =w’ everywhere in ®. So, if we form
a solution (3.1) by i, because v, as the solution of the linearized Navir-Stokes
equations satisfies the boundary condition, then taking that u(, on B will have
the zero value, we have

LU || =0, respectively H,=0,

everywhere in &, which may be easily seen from the section 3.1 of [2]; thus
[ull=0.

This proves the uniqueness o' =w’ of the solution of the non-linear Navier-
Stokes equations in a bounded region &.

The case of an unbounded region may be similarly treated as well as
for the linearized equations. Namely, if the number of dimensions is odd it
is simple to verify, from the behaviour of G¥ and v, at infinity, that
also o at infinity has the zero meaning. It is a simple matter to prove this,
therefore, we omit to work about it. The theorem is proved.
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