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In this paper are considered the existence and the uniqueness of solutions
of the Navier-Stokes equations on a n-dimensional Riemannian manifold 9,
assuming on R the existence of classical Navier-Stokes equations. The assumed
classical form of the Navier-Stokes equations may be regarded as a first
approximation of the exact Navier-Stokes equations for a Riemannian manifold.
It may be expected that the constitutive equations for a viscous fluid on R are
different from the stress-rate of strain relations in the Euclidean space E,. The
reason for the investigation of solutions in a Riemannian space is that in
applications, especially in aeronautics and in hydraulic engineering there are
profiles and stream spaces which have not Euclidean but Riemannian metric.

In Chapter 1 is formulated the problem for consideration. Chapter 2 is
dedicated to the construction of afundamental solution for the elliptic equation
using Hadamard's idea for the construction of an elementary solution for the
establishing of the existence of a parametrix. In Chapter 3 is given the solu-
tion of linearized, in the sense of neglected inertial terms, Navier-Stokes equa-
tions, with detailed consideration of the question of the existence and the
uniqueness of solutions. The solutions are given in the form of potentials of
distributions. The influence of the number of dimensions of R on the question
of the existence of solutions is of interest.

This paper is dedicated to the steady case of the Navier-Stokes equations,
while the unsteady one will appear elsewhere.
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1. Introduction

Let ® be a connected domain with the boundary B of an orientable,
n-dimensional C* Riemannian manifold R with the metric ds?=g,; dx’ dx/, whe-
re gy=g; (x4..... ,x") is the metric tensor, and let Dy be a region outside
of B, namely the complement, that represents a continuum of D to a sphere S
of the infinitely large radius R. Suppose that on D, respectively on Dy exist
the following partial equations, given in the system of local coordinates

dot L
1.1 - = P'l—tux's
(1.1 pdt P j
(1.2) ‘Z)i,,'zo,
where

, . covariant derivative with respect to the coefficients of connection
Te= {5} 5

p: constant density;

ti: stress tensor, /= —pg’+2u DY;

Dii: deformation tensor D/ = %(v"’f +vdi);

w: dinamical coefficient of viscosity;

p: hydrostatics pressure;

Fi: extraneous force field.

All magnitudes are time independent, and indices take the values 1,...,n.

A vector field o/ (x), x=(x!,....,x"), which for any given scalar field p (x)
satisfies the equations (1.1) and (1.2), will be said that defines a velocity field
of a viscous fluid in D and Dy respectively.

Aim of this paper is; to find unique solutions of the above equations,
v (x) and p (x) from C* (D) for any F' (x) ¢ C* (D) and a given vector field ' on B

(1.3) (@)s = fic C* (B),
and unique solutions 2 (x) and p(x) from C* (Dy) for any F(x) € C* (Dg) and

a condition of vanishing of these solutions on the surface By of an infinitely
large sphere, namely

(1.4) (vi)%R—’()’(P)‘BR—*O, When R-> 0.

To the above conditions ought to be subjoined also a condition that
there is no streaming across B,i.e.

(1.5) [71dBi=0.

We remark that on these problems have been working many authors, but
only in the case when R is an Euclidean two or three dimensional space. So-
me of them are: Finn [2], Ladyzhenskaia [11], Leray [13], Lichtenstein [15],
Odquist [18] and others. For further informations see [11].
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2. The fundamental solution of the elliptic equation on %

2.1 Preliminary investigations

We consider the differential operator

2.1.1) A=bi(x)

) 0
+d&(x) —+c(x),
oxiox’ ) oxt )
on an open set & C M. Here b (x) is the contravariant tensor such that the
quadratic form is positively definite i.e., b (x)&; ;>0 for Z (£9%>0, and d'(x)

changes, by a coordinate transformation x — x, as follows

- - 0x 2x .
2.1.2 a(x)=—"-a (x) + —— bk (x) .
2.12) (D) =S @)+ == 2 b
These transformation rules for the coefficients are connected with the fact
that 4 is independent of the local coordinates (x!,...,x"). For the sake of
simplicity, we assume that the coefficients b (x), @’ (x) and ¢ (x) belong to C* (&).

A typical representative of the above operator is the Laplace’s operator
A=gliy;vy;, where gV is the metric tensor, and with y is denoted the cova-

riant differential with respect to the connection {,,}, in the fixed system of lo-
cal coordinates. It is easy to verify that this operator has the form

(2.1.3) A=gul),aj+A'0,+B,

0 . . . . . .

where 90; = —()~—_, with matrixes as its coefficients. Let us apply this operator
xl

to any mixed type tensor @), whose matrix of the rank » we shall denote

with Q:

2.1.4) AQ=gi0,0,Q+ A0 Q0+BQ.
For the sake of simplicity, we assume further that g, 4’ and B are infinitely
differentiable functions of the local coordinates (x',...,x").

Let us construct, under a certain hypothesis, which will be satisfied if &
is compact, the fundamental solution-fundamental tensor of the equation (2.1.4)

(2.1.5) F(x,£), x£c®),
with the following properties:

i)
(2.1.6) Ay F(x,8)=0, A;F(x,5)=0,

where £=(El,...,&") is a parameter point.
ii) If, according to the metric ds?=g;dx'dx/.
I(x,8)=5(x%)

be the square of the geodesic distance between points x, & = &. Then, if x—&,
respectively I (x,£)—0, the fundamental tensor F(x,%) exhibits the principal
singularity characterized by the following representation
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(2.1.7) Ur-m+ViogT+ W,

where U, V and W are supposed to be regular functions of x in a neighbour-
hood of &, with Uy (€,€)#0, and where the exponent m should have the spe-

cific value; m=%—l .
iii) We have
(2.1.8) F(x,%&) is bounded in & (x) for fixed x (),

(2.1.9)  [|F(x,E)|dE, where dE=(g)!2dE!-..dEm and g=det(g;(x)),
¢ is bounded in x

But, for forming a fundamental solution of the before denoted equa-
tion we need a parametrix. Therefore, at first we shall establish the existence of it.

2.2 The parametrix

If T (x,€) is the square of the geodesic distance between two neighbour
points x,£ = &, then we have the following

Lemma. For the equation (2.1.4) we may construct the parametrix*

(—15)—r—'"(x,£)- U (x,6) +10gT (x5,5)- Vi(x,E) + (n>2)
n—2)t,
(2.2.1) P/ (x,)= + Wix,%)

—4—lnlog T (6,8)- Ul (6, 8) + V) (3, B) , (n=2).

such that
(2.2.2) U}'- (x, &), V,': (x,8) and W}: (x,8) are infinitely differentiable tensor fun-
ctions of x in the vicinity of &, with U; (&, £)=3;,

*.
(2.23) A, P; (x,§) gives an infinitely differentiable tensor function of x in the
vicinity of &,

whereby <, denotes the surface area of the n-dimensional unit sphere, and m =§—— 1.

Proof. To prove the existence of the parametrix, we shall apply first of
all the operator A to the product of /(') and of a mixed type tensor Y;(x,£)
considering /(T (x,£)) Y;(x,£) as a function of x. It follows

AlY;=IA Yj4+2gm ¥, -V, Yi+ Y A,
respectively, if we take into account that
Vml=1I'T,,
Vu Vpl=1"T, T,4+I'V,,T,,

* To this purpose we follow the Hadamard’s idea, see [5].
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whereby the symbol I';=0;T" is introduced, and that
V, Yj=0, Y+ T ¥5—T5Y:,
we obtain
(2.2.4) AIYi=IAYi+V'[AT-Yj+2g™T,,(0,Y)+TnY;—T5Y)]+g™T, 0" Y]

Let us observe now any point z on the geodesic joining the points x

and £ as a function of s=s(&,z). We have then the known identities, see [20].
Let be

. . . dzf

(2.2.5) L(z,2)=g,;(2) 7z =e, where z/=— .

5

e is an indicator of geodesicity. In our case, because the metric is positive
definite, e= + 1. We have further

OL(x, x)

Fi(x,8)=s(x8 ———=25(x8) gy () ¥,

and from here we obtain the important identity
(2.2.6) g () (x,8) I (x,8) =4T (x,8).

We introduce the normal coordinates y* of the point x around . Then

¥ =(d_x) s=ds,
ds E
and in that case the square of the geodesic distance obtains the form
@.2.7) T (x,5) =g, (x) }'y

Then, with (2.2.5) we have the important relation

(22.8) 8ij Fi 0J=2si .
os

By taking that

AT—2n+xk 2088 o et (g, (),
o xk

it is easy to verify that

2.2.9) AT —2n when x—§.

Let us write now (2.2.4) in the matrix form and introduce the symbol
(2.2.10) 2n—AT—-A4'T;=4H,

where A' are the matrix coefficients, which contain in themselves the coefficients



136 Milan D. Puri¢

of conmection {,f,,,}, then taking the expressions (2.2.6),(2.2.8) and (2.2.9) the
equation obtained in such a way becomes

(2.2.11) AlY=IAY+T {2n——4H+4sai}Y+4Fl”Y.
s

This differential equation can be made independent explicitly of H defining a
new operator

M
(2.2.12) A=M-1AM,

where the matrix M is defined in the following way

(2.2.13) M=exp(f£ds>,

5
and satisfies the following differential equation

sa—ﬂi=HM.

s

In this way we can write the equation (2.2.11) in the new form

M M 0
(2.2.14) AIY=IA Y41 {2n+4sd—]y+4rz”y.
N

Now, to prove the lemma, we suppose the regular functions U (x,%) and
V (x,£) in the form of formal power series

U=M> U.T,
(2.2.15) T:"
V=MD V.7,
=1
where the index v does not denote the tensor character of magnitudes, but by
it one does the summing, and U,=I.

If now the operator (2.2.12) is applied to (2.2.1) in the way given by
(2.2.14) taking (2.2.15) we obtain

M * v 0 M ®
AM-1p=T-m) [t1 {4 (x—m) (T +s ?)?) U.+A UT_]}+logI‘Z ! {
T=1 =1

0 M < / 0
[4T(T+s—) Ve+ AV 3+ ZFT—‘ (4 (m+2r+s—v) Vi,
s T=1 s
For the case when the number of dimension n is odd, we obtain the lemma
if we put here that V.,=0, and U. determine successively so that

0 M
4(——m)(T+s—) U.+A U,_,=0,
0s,
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where U, are infinitely differentiable functions of x in the vicinity of & and
U,(,8)=1, U_;=0. In this case we have

11 M -
(2.2.16) U (%,8)= ———— — f retA U._, dr.
4(t—m) s° .

This formula may be expressed also in the system of normal coordinates where
it will have a more simpler form

1
(2.2.17) U¢ (x, a) = - '—];_“ f tT_l X U‘r—l (x (E.u at)’ E) dt,
4 (t—m)

from where it is easy to see that U.(x,%) is of the class C* with respect
to x and £ on ©.

Now, we shall consider the case when the number of dimension n is
even, and first we assume n>>2. In this case we suppose the functions U (x,%)
and V (x,£) in the form of following power series

m—1 v—m
U=M ( JUT+ Y Umﬂrmﬂ) ,
(2.2.18) 0 0

1
VMV, I",

=0
with Uy=1 and V_,=0. For sake of simplicity let w=v—m.

If now we apply the operator (2.2.12) to (2.2.1) in such a way as (2.2.14)
and take into account (2.2.8) we obtain

* m-1

0 M !
M-A P= > T-mist [4(¢—m)(r+s3;) U, -+ AUT_1]+logFZFT“1{4T(T+m+
=1 / T=1

0 vm

M 0 M
+S—_) VT+AVT~] -r! 4(m+s_')Vo+AUm_1 +Z =1 4‘7(
os os “~

0 0 M
(m+‘r+s—) Upyrzt4 (m+2'r+s~—> Vit AU, 4.
o0s os

From here we obtain successively

1 1 M
Ui=——— — | rmAU,._, dr, (r=1,...,m—1)
4(v—m)s*
[
U,=0,
S
1 1 M
2219) Vi=——— | rm'AU,_ dr,

4t g7
0
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T

ve-— L 1 oA, d
T Eyrﬁ»mfr -1 G, (T=1,3,---,P«),
0

S

1 1 M 1M
Upyr= —— frm+r—1 AU,ie i —= AV._ +4~7 VT} dr

4’T.' sm+‘r -
0

=12,...,v—m).

Finally, applying the operator (2.2.12) to (2.2.1) for the case n=2 and taking
(2.2.15) we obtain

. Lo d M 4 d
M-1A P=logT S T+ l47(‘r+sa—) UT+AUT_1}+ZFT—1{4T<T+sa—)VT+
T=1 S T=1 S

0 M
+4 (21‘+s—~> U.+A VT_I} R
s

and from here successively

s

11 M
U‘t= —_—— rT‘IA UT—I dr, (T=1,2,...,V),
47 57
0
(2.2.20) V,=0,
11 M 1M
Ve=—— — | rm AV, | —ZAU._,+47U.\ 4. (r=1,2,...,v).
47 57, T
0

We can express all above cited formulae in the normal coordinates and
in that case they will be more simplified. Also it is easily to be concluded
that all of them belong to C* with respect to x and £ on @,

Now we shall prove the convergence of the series (2.2.15) and (2.2.18)
by using the method of dominant functions.* To this purpose, we introduce the
normal coordinates instead of x, observing that U, and ¥V, are functions of the

M
class C* of & and y'=)' (x,£). In the new coordinates the operator A will
have the form

M M 02 M M
A=G® ———— 1 g~ +8B,
0y*oyP 0 y*

M M M
where G*®, 4> and B are infinitely differentiable matrix functions of £ and A
because g”, 4’ and B belong to C” (&), and these are obtained from them by
transformation of coordinates by rules given at the beginning of the section 2.1.
Every coefficient of the above operator allows in a certain small open set
{€:r(E,&)<c) C® around the fixed point £, € ® the dominant

G —~1 n )
oc(l——), 0'=izl]y‘|,

* See Hadamard [5].
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for suitably chosen positive constants « and p. For the dominant of the
certain matrix function D (§,y) represented in the form of the series

1 1
222 DEN=Dy @)+ D@+ DBy,
we understand the new function d (y) such that the matrix functions Dyg. . . 5 (£)

of the class C* (&) satisfy the inequality

| Dug v (B)|<dsp- . -vs

where | | denotes the norm, everywhere in the small open set around which
is under consideration. The norm of the matrix D is defined by

ID|=(2 | Dug...s|)'"2.

By D <d we shall denote that the matrix D allows the dominant d. Now,
we can verify that if

—1
D@w<k@-3), (=1,
e/
respectively

A AN n n?
ADLI(+1)od'k (1——) , where oc’=a<1+_+_2_>,
e P P

then for v<{/+2, we have

s

1 " 1+ D)o k
_ T—1 -~ =
(2.2.22) [ rTA DS o\
0 T l - —)
.

Let us go over to our case, namely the functions U and V given by
the series (2.2.15) and (2.2.18). We shall first observe the case when n is
odd. Starting from

-1
Uy= 1<k, (1_9—) ,
from (2.2.16) and (2.2.17) we see that

—27—1
U.<k. (1—2) , where k.=2ma' k. ;,and k,=1,
e

: 2
If we choose suitably the positive constant g, then obviously I'=y, y'<g (i) .
p

Hence, we have

UT FT<<E)21(1_9_>~21—1 ’
P
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respectively

S A

where B=(2ma’g)'/% proving the absolute and uniform convergence of the
series > U,T" in the mentioned domain around the point &,. The series is
convergent for c<—p—*

2(1+8)

We can apply the same procedure also to the case n even and >2. We
omit details about it but immediately go over to dominants. Namely

G —271—1
U, < (1_%) , x=0,1,...,m—1),
o
(2 2.24) N
V,<8*+'”(l—~> . (=0,1,...,u),
e
where §= n—l o’. By induction we obtain

—27—1
(2.2.25) U,<‘rb‘f—’(8+1)(l——:-) , (e=mymt1,... ).

Now from (2.2.24) we get

27 —-2Tt—-2m—1
V. <™ (Ei> (1—3) ,

P P
respectively
v 27 —27-2m—1 —-2m -1
(2226) S (E) (1-2) (1= 2) " (1- 25 v) e,
=0\ P [°B P 1-1-!3

proving the absolute and uniform convergence of the series z V.T'" in the pre-
viously mentioned domain for o<p/2 (1+B),

In the same way from (2.2.25) for the case t>>m we have
27 —27t—1
UJ‘T<T(E) (1—5) :

. P P
respectively

(2.2.27) S+ (9—6)27(1 - 3)*27_1<<(B—°) (1- i>_1 (1- 1—”3—<s>—2 :

T=m \ P | e/ e P e

where 8% = (14 8) g. The expression (2.2.27) shows the absolute and uniform con-

vergence of series Z U. I in the previosly mentioned domain for 6<p/2 (1 +B)
In that way we have proved in fullness the convergence of the series (2.2.18).
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Since, the first of (2.2.20) is equal te the first of (2.2.19), and the same
is also valid for the last of (2.2.20) and (2.2.19), it is obviously that also
for n=2 the series (2.2.15) converge and therefore, we shall not dwell on the
proof.

Since we have proved the absolute and uniform convergence of the se-
ries (2.2.15) and (2.2.18) for x,£ < ® in a certain neighbourhood of & & &,
we can finally conclude that the lemma is proved, respectively that the ope-
rator A applied to a mixed type tensor has a parametrix of the following form

~ L loeT 8- Ul B+ Vi(x, ), n=2,
4T
(2.2.28) Pj(x.,£) = " _12-)—* T (x,8)- Uj(x,5) +log T (x,E) - ¥} (x,E), n=4,6,8,..,
1 ;
r=m(x,8). Ul (x,5), =357,..,
P (x,8)-Uj(x,8) n

such that the conditions (2.2.2) and (2.2.3) are satisfied.

2.3. The fundamental solution

Let & be the closure of the open set € contained in an open set & ¢ R
such that the parametrix ﬁ(x, £) is defined for arbitrary x,£ < ® and let § be

an arbitrary small open subset of € such that the closure § is also contai-
ned in €. Under these conditions we assume the following

Hypothesis. There exist a small positive constant vy with the following

properties: Let s(x,£) be the distance between the points x c€and £ c 5 and
let 8(s) be an infinitely differentiable function and > 0 for s > 0 such that

1, 0<<s<y

2.3.1 3(s)=
2.3.1) (s) 0, s>27¢

then

a) the tensor function

.U I@)-VimE),  n>2,
i (n—2) Tn

(2.3.2) Pj(x,8) = |

——TI(T)- Uj(x,8) + Vi (x,§), n=2,

4t
where
T@) =38,

(2.3.3)

O@)=38(s)logl,
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is defined everywhere;

b) the function ‘
(2.3.4) K;(x,£)=A Pj(x,5)
is of the class C” (&) and is bounded;

¢) the integral

(2.3.5) [ dx is bounded in & ;

s(x,B)<2y
d) the integral

(2.3.6) @f |P(x,E)|dE is bounded in x.

The above hypothesis will be surely satisfied when & is compact, and
in the general case it will impose conditions upon the coefficients g¥, 4’ and B.

Theorem. Let the assumed hypothesis be satisfied. Then the tensor function

(2.3.7) Fi(x,E) =P (x,£) + / Ok (x,7) P (0, 6)d,
where
(2.3.8) 0w =3 Kok,

Kok (6m=Ke (), Kok (6,m) = é Ki (%, 0 Kine (G d T

satisfies the equation
(2.3.9) A Fj(x,£)=0, »Ee®,

and the conditions (2.1.8) and (2.1.9).

Proof. We shall first prove the convergence of the series (2.3.8). To this
purpose we observe Banach's space C (@), all real-valued continuous C* ten-
sor functions T%(x.%) defined on &, with the norm

| T||=sup |T(x,8)],
xEc®
where

[T, 8) | = (| Ty (x,8) TV (x,E) [ )*12.

If we now, by the expressions (2.3.4) and (2.3.5), put

sup |K(x,8)|=S, sup [ dx=L,
*EEG £

s (x,8)<2y
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then we have the following estimations

sup | Kqy(x,8)| <S" L1
x»EE®
(2.3.10)
sup [ | Ky (x,E)|dx<<S"L”.
Ece ©

This proves the convergence of (2.3.8). Thus, Q) (x,7) is a continuous C*
tensor function of x and £ on a bounded set &.

To prove that F}: (x, &) satisfies (2.3.9), we must first show the possibility
of the differentiation under the sign of the integral. Let € be a small open set C &

with the regular closed boundary § such that the parametrix P} (x,£) is defi-
ned for arbitrary x,£ € (EUSJ). We suppose that £ €€ is fixed and is the
centre of a small geodesic sphere S(8) of the radius & and of the surface
B (8). Let us consider on the domain

E=Gs+5()

the integral

J 0kt Pin 5 €=] 0k (x. ) Pi‘(n,a>d@s+sf(gz (.0 P} (1, ) dS (3),
)
and let us make the differentiation with respect to £. Then

0uf = [ Qi (x,7) 0, P (1, §) d €5+ [ Ok (x, 1) 0. P} (1, £)dS (3) -
€ G S@)

Since P’,‘ is the continuous tensor function on S(8)UP(3) and it has the
continuous first derivative, and [ Qi (x,%) 9, Pi(y,£)d S is convergent, then
s

is valid the relation
(2.3.11) s(fs)Qli(x,n)anP’;(n,i)dS(S);(fs)czux,n)P’;(n,&)d%Bn.

If one examines the behaviour of the above integral when it may be seen
that is valid the estimation '

lim [ Qi (x, 1) P} (, §) d B =0(3'7).
30 $(¥)
Thus
@312 0, 0i(x ) Pi(n,E)dC= [0k (x, 1) 0, Pj(0, £ 4C,
and it is easy verify the also validity for the covariant derivative, namely that

(2.3.13) V] Qi (o) P (1,8) d €= [0k (x, ) v, P] (1, £) A €.
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A once more differentiation in the same way as the above, namely g"/ 9; 9;
shows that we need to examine

(2.3.14) [Qk(x,m)0, P (n, &) d Pe.
(3

First we shall give certain estimations. Namely, since I'=8>=const on P (3),
then the surface element d%f}; onB(J) is parallel to the vector o;'=T);.
Hence, by taking that

g’j F,- I“, =4T
ds»B=gijd;fBi ds'Bj’
we obtain the following relations
[;d Py =T, d%;,
(2.3.15) L
CdP;=y4rdP.

From (2.2.28) we see that the parametrix P;- (x,£) has the following form

Pi(n, )=k (D) Y;(n,§),

where /(T is either I~ or log I, and Y}(n,£) is either U’(x,£) or Vi(n, ).
Substituting it into (2.3.14) we obtain

(2.3.16) 1; {8)Q£ (x, ' Y5, E)ed 33s+{;f( gé (x, ) 0, Y (0, £) 1dP° -

When [/(I')=I-" then the first integral in (2.3.16), by taking (2.3.15), gives
lim [k Qi(x,n) Us(n,E)I'T,dP = —(n—2) 1,k Qi (x,m) UX(E,£),
80 R (3)

and the second one

lim [ kQk(x,m) 0, ¥/ (1,£)I1dB =0(").

50 P(3)

Also in the other case when /(I')=log" we can readily verify that the esti-
mations for (2.3.14)

lim

(0, n>2,
3—0 P )

4nk Qe (x,E) US (E,E),  n=2,
are valid.

On the base of all said and taking that U} (£,8) = 8;, and that

1

e n>2,
k = (n—2)‘r,,

I
™

—4r, n
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we get finally the estimation for (2.3.14)
—0i(%,8),  n>2

lim [ Qi(x.m)0Pf (1,8) dfs = ,-
—Qj(xya)’ I’l=2-

80 ¥
Thus

(2.3.17) g™ 0, 0s@f Qx (x, 1) Pj (1, 5)d@=@fQ1§(x,‘f))g"sdndst(n,E)d@—Q}(x,i),
respectively in the case of covariant derivatives, since g™vy,y,=A, we have

(2.3.18) A @f Qi (x,m) P (n,£)dC = — 0} (x,£) +@f Qi (x, M)A Pf (1,8)dG.

We can now easily prove (2.3.9). Applying the operator to (2.3.7)
AFj =AP) +A(Qi°P)),
where is introduced the symbolic product
@k PY) (v, = Qk(x, ) P (1.£)dG,
because of (2.3.4), (2.3.8) and (2.3.18) we have
AFj=Kj—Qj+Qi°Kj=0.
We have also (2.1.8) — (2.1.9) by applying Fubini's theorem. Thus the
proof of the theorem is completed.

3. The linearized Navier-Stokes equations

In this Chapter we shall consider the slow streaming, respectively the
current of strong viscous fluids, therefore, we can in the equation (1.1) neg-
lect the influence of inertial terms. In this case, hence, on D respectively
on Dy exist the following equations

(3.1) pF +1,=0,

vf, = O,
respectively
(3.2) pFi—p,;gl+pAd=0,
(3‘3) ‘Z’f,‘=0,

with the conditions (1.3)—(1.5).

From now on when we do not speak strictly that anything is related
to the domain ® or Dy then we shall always turn to any open set & C K.
The boundary of the set & we denote with §, and the boundary of the
domain ® with B. Accordingly to the Riemannian metric we naturally denote
the measure on a set & with d®, where

d®&=(g(x))/2dx"- - -dx", and g (x)=det (g; (x)).

Moreover, we shall assume that the space & is flat and entirely filled with
fluid. Under mentioned suppositions let us solve the Dirichlet’s problem.

10 Publications de }‘Institut Mathématique
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3.1. The method of potentials of distributions

If we neglect in the equation (3.2) the influence of the extraneous force
field F!, then we can state the following

Theorem. The Dirichlet’s problem for (3.2) and (3.3) is uniquely solvable
in the class C®(D) at the continous field f'c C* (B), satisfying the condi-
tion (1.5). The problem is also uniquely solvable in the class C* (Dr) at the
arbitrary continuous field fic C*(B), and for n>=2 odd. The solutions of the
class C*(®) completely continuous up to the boundary B are given in the form
of potentials of double distributions
(3.1.1) v (%) =%f Vi 07 (%, E) 0% (E) dB;,

(3.1.2) p(x) =%f Vi P’ (x,8) ¢* (£) dB;,
where xc®, £%B, and

(3.13) o =f )+ S N Kb,

v=1
Koy (1) = [ Kop (0.0) 7 (©) 4B,
Kk =Kk = i vny, Ky (1,0 =%fK(1§k(7],‘E) K(v—kl)j (¢,0)d8,

at which A = + 2; f = 4+ 2f corresponds to the case in ® and Dy respectively

Proof. Any tensor function

(3.1.9) vk =gk S+ gl y; ¢,

from the class C*(®), will satisfy the equations (3.2) and (3.3) if
(3.1.5) AS=0,

(3.1.6) Ag=—gKV, S,

3.1.7) r=pAdq¢.

This can be very easily verified. Thus o (x,§) € C*(®) represents a funda-
mental solution-fundamental tensor of the equations (3.2) and (3.3). In the
purpose of a fundamental solution we can also use a parametrix. The funda-
mental solution of the equation (3.1.5) we had already given in Chapter 2
by (2.3.7), that only instead of the tensor field, in this case a scalar field
stands. But, the solution of the equation (3.1.6) we shall assume in the form

(3.1.8) ¢ (vz,C)=®fF"f(n, E)V;SE,dY,

where Fi(n,£) is given by (2.3.7). From (2.3.18) it can be readily verified
that (3.1.8) satisfies (3.1.6). Afterwards, we have shown in Chapter 2 that
§€C”(®), and from (3.1.8) follows also ¢ € C”(®) and so 2/ C™(G).
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To show that (3.1.1) and (3.1.2) are indeed the solutions of the stated
problem we need before all to examine the behaviour of the potential when
the point x € & approaches the point £ €B. To this purpose, we describe a
small geodesic sphere S(8) with the radius 3 and the surface % (3) about the
point £ € B, and then we consider on the boundary

By =B + % %),
the expression

/'vkvwx,a) ok (5) dBy; ¥ % f Vo (x, &) ok (8) d ;.

By A ()

As in the section 2.3 we can also consider the limit value of the above
integrals when §—-0. As a result of the limit process the second integral on
the right hand gives —¢'(£). Thus, it can be concluded that

¥ 1,
Y@= @A),

5f(£)=——;—pf(z)+v"(z>,

and since on B is given a field f/(§), obviously that the field pf(£) must
satisfy the following integral equation

(3.1.9) o' @ +2 [ Vol G ¢ () 4B, = 11(B),

in which A=2 and f = 2f denote that it is an interior problem, respectively

in®, and A=—2 and f = —2f denote that it is an exterior one respecti-
vely in Dy.

If we introduce the symbol
(3.1.10) KU (0, &) = i v (0, §) ¥,

where n* is the normal vector to B, then the equation (3.1.9) obtains the
new form

(3.1.11) p"(am%fKff(z.n)p,-(n>d%=ﬁ(a)-

An iteration procedure of solving the above equation leads to the Neumann
series ‘

(3.1.12) B =T O+ 3 VEHE.
y=1

where

(3.1.13) Koy ® = [ K& ) f; () d'B,
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is an iterated kernel, which for v > 1 has the form

(3.1.14) K(;)J (E’ "1) =%fK(1)ik (E.n C) K(v—kl)i (C’ .’)) d%a

where Kk —Ki.

Substituting (3.1.13) into (3.1.12) and supposing for this time that we
can reverse the order of summation and integration, then we obtain

(3.1.15) B =71E) + e 0 f (n)d®,
where
(3.1.16) HED =3 2K,

y=1

is a resolvent.

Let us prove the convergence of (3.1.12). To this purpose we consider
the class &2 of all measurable fields ¢, such that the components ¢V (¢) are
defined for every ¢ and are measurable functions of the coordinates x'=x’(z),
and |@|? is integrable in the Lebesgue sense on &. Let L? be the linear space
consisting of all measurable fields on the open set & such that

(@ 9) < +o0,
ie
L2={q:(p,0) < +o0}.

L? constitutes a real Hilbert space on &, having (¢,{) as inner product.
The norm in L?(®) will be

(3.1.17) lelle=lleles ={JleG)Pd®},
where | | is the absolute value defined as follows
(3.1.18) lo () [ = ey ) 97 () ).

Denote by g the real number associated with p =2 by the relation 1 + l« =1.
p 7
Then, if ||¢||, and ||{ ||, are finite, the integral

(3.1.19) (@ )s =@f oy PUd @,

converges absolutely and satisfies the Schwarz’s inequality

(3.1.20) [ Psl < ll@llp- |1l

Let us now consider the kernel K¥(n,%) € € (B). Such a kernel defines
a bounded operator K on L? (B) in the following way: If fer? (B) Let

(3.1.21) Fi(n) =%fK""(n, £)/;(£)dB.
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Since

| F(n) 2 <%f|K(m £ da%f \fE)|dE, Ee®.

then integrating it with respect to n <=8, we see that

(3.1.22) | F||= | Kof|l < {JJIK(n,E) pdndg):|| f1],
respectively
(3.1.23) IKl<{f]IK@E 2 dnde)",

By Fubini’s theorem

[1K(,8)[2 dE,

B

exists almost everywhere and is a square integrable function of % < 8. Pro-
ceeding inductively (3.1.22) we find that

Koo P <[ f H20 [ K (0,8 5,
and from here

| Koo £l < || £ 11 H,
where

H = {fg[ | K(n,8) PdndE)".

B

Thus, for the series (3.1.12) is valid the inequality
lell<IFl(1+ 3 1r#),
v=1

which shows that if f is square integrable and
(3.1.249) A H < 1,

that the Neumann series (3.1.22) converges in the mean to a square inte-
grable vector function ¢! which satisfies (3.1.11) almost everywhere on B.
The above inequality also enables us to conclude that (3.1.16) is a &2 kernel,
that (3.1.12) converges almost everywhere, and that we could reverse the
order of summation and of integration to obtain (3.1.15). Thus, obviously pf
is unique, that there exist the resolvent k" given by (3.1.16), as a bounded
linear operator and that the solution of the integral equation (3.1.11) can
be found in the form (3.1.15), i.e.

o G =((I+H)f)®),

where 7 is the indentity operator.
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We shall now prove the complete continuity of the operator K, having
the norm given by (3.1.23). From (2.1.7) we can formally conclude that,
if I'(n,&)—0, then the kernel (3.1.10) shows the singularity given by the
representation

(3.1.25) !

rm+ 1

logI’

Tyt U (1, 6) + == Ty P (n, ),

where U/ (m, &) and pu (n.&) are continuous C* tensor functions. Suppose
the existence of a small positive constant « < y with the following properties

Ki(m,8), s=a,
0, s < a,

0, 5=,

3.1.26) K{ (%) =
( ) Ki(1,8) { Kii(n,8), s<a.

K7 (n,%) ={

Thus, we obtain the decomposition of the kernel.

Since on the bounded set & the kernel KV (0, &), where 7, & €8, is boun-

ded, it dnly remains to show the estimation for K5 (v,£). From (3.1.21) intro-
ducing the representative

Kin8) _ k(5

(3.1.27) T o

. 0<A<n,

for (3.1.23) we obtain then
Kof = W@y iBar,  aew,
« s
respectively

worten] [

Vg

where L=sup [ |k(n,&)|dE. Schwarz’s inequality and Fubini’s theorem finally
nEY By

give the estimation for the operator K,, namely

(3.1.28)
1 1
|;K2||2<L2U;;dn“fs7da]-
B

x

The first integral on the right is bounded, and the second may be made as
small as desired, namely it may be made arbitrary small for sufficiently
small «. In this way the continuity of the operator K on L?(B) is proved.

. 1
We can now prove that the operator K is compact. Namely, if a=-ﬁ and

instead of K; € ¥ (®) we define a new operator Ky, then it can be easily
verified that

|K—Ky||—> O when N-—co.

The fact that Ky— K then assures us that K is compact.
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Now we can give the estimations for the solutions (3.1.1) and (3.1.2).
Namely, if the region & is bounded then for the cited solutions are valid
the following estimations

le@|<Cllele,
(3.1.29)
lp(x)| < Cille]z2s
where
C=sup [|K(x,E)|2dE,
xEB B

C,=sup [ | K(x,8)|2dE.
xXEW B

These estimations show the continuity of the solutions in the whole region &.
That these solutions belong to the class C* () it is obviously as K% € (8 U ).

Since, we have shown the continuity of the solutions in the bounded
region we shall now prove also its uniqueness on &. To this purpose we
consider the homogenous equation of (3.1.9), i. e

(3.1.30) o' (E) + 2{3 KU(E,n) g () dn=0,

because A=2 corresponds to an interior problem, respectively in &. It can
be easily verified that the above equation has n non-trivial linear indepen-
dent solutions. Namely, the normal vector on ' satisfies (3.1.30). It follows

ni(£>+2nk(a>{3 Vi Y (E,1)dD;,
and since

. 1
ivw, @) dB; =~ 5,

which can be easily concluded from the behaviour of the above integral at
n— £, then

ni(5)+2nk(a)(_%81i)=0

This verifies our statement. That this is the only solution it can be easily shown,
because every other solution will be linearly expressed by n'. On the base of
all said we conclude: In order that the inhomogenous equation (3.1.9) pos-

sesses a solution, it is necessary and sufficient that f* be orthogonal to the
eigenfunctions (non-trivial solutions) n' of the homogenous equation, i.e

(3.1.31) [findB=0.
B

In this way we have proved the first part of the theorem, namely the case of
a bounded region & (i.e D).
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Let us consider now the case of an infinite region ®. The kernel
Kii(x,8) ¢ C* (BUF) has a local character, namely it is valid for two neigh-
bour points in a small open set &,. But, as it is valid for every open subset
®,. ®,,...., belonging to a given system of neighbourhoods {(}, then it has
a global character, i.e., it will be valid for the whole space &, covered by
{®;}. Suppose now the existence of a sequence of succesively continuous
measurable fields {7} on open sets € C €, C... CE;=®. The topology for
each space € of the sequence ..., € is determined by a system neigh-
bourhoods {&,;},..., {€,} such that €;C..CE; Namely, the topology in
G, is induced by the metric of that space, and {€;} forms a basis of the
topology of €,. At mapping of a field 7, on a set &, to a field T,, on a set
&,, we shall have also the change of the structure of the space €, to the space
€,,, namely g,(}’)—>g§,'~"). The structure is continuously changeable to a sphere
S of the infinitely large radius R. Locally looking, in this continuous process
a geodesic sphere is transformed to Euclidean sphere. In that case the square
of the geodesic distance gets

(3.1.32) [ (x, £)=Gy(x) (¥ —&) (x' — &),

where Gj; corresponds to the structure of the sphere S.

Let us now examine if our operator K € L2(®) does a continuous map-
ping of a field T, through a sequence of succesive fields {7,}. Then, obvi-
ously we need to examine lim K7T,. Since the mapping of the field 7, from a

§ —> 00

set to a set accompanies a change of the structure of the sequence {&} of

spaces up to a sufficiently large sphere, then the above limit process corres-

ponds 10 the process lim KT, i.e., letting that the point & is removed infi-
—

R @
nitely from x. By taking (3.1.25) we can give the following estimation

__l_ logs

(3.1.33) lv(x)] < Mllesn—l‘ dE+M2N2f—;—dE,
3 v
where
M=sup|k(x.8)!, N=sup|p(E)].
N e

Thus, when the number of dimensions of the space & is odd, then for
‘vj we have the estimation

1

= -
s"-2

(3.1.34) lv| < 4

namely, the sequence {vy}, where ”NzAR[T_z is decreasing, and when N—

then vy -»0. What means that, for any >0, there exists a compact set
& C R such that x €@ implies |v(x)| <.

But, if the number of dimensions is even, then is valid the estimation

(3.1.55) jv| <4 + Blogs.

s -2

Hence, the sequence {vy} has a logarithnic growth as N—»o.
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In the same way it can be given the estimation also for the pressure
field, namely

1
Srz—l

s

(3.1.36) lp|<C

from where it is seen that {py} does a decreasing sequence, namely p (x) vanishes
outside a compact set of x for every n>2.

We can now examine the uniqueness of solutions for the case of an
unbounded region &. Observe the associated homogenous equation of the
equation (3.1.9),

(3.1.37) ﬁ@)—2£K”@ﬂﬂwﬁﬂd%=Q

because A= —2 corresponds to an exterior problem, respectively in Dg. In
the vicinity of infinity, since p=0, then the equation of the motion is reduced
to the form

(3.1.38) Di,;=0 respectively A2i=0,

which corresponds to a perfect fluid motion. In this case the deformation
tensor becomes equal to zero, i. e.,

(3.1.39) Dii=0.

It is easily seen that every solution of the equation (3.1.39), having
n(n+1)/2 linearly independent, satisfies the equation (3.1.37). Namely, the
covariantly differentiating equation (3.1.37)

Vi o' =2/ Vs veo o dB =0,
and writing a new equation in which the indices i and s are changed, then
if we make the addition of them taking (3.1.39) we obtain
(3.1.40) pirs+p5 i =0,

which means that (3.1.37) has n (n + 1)/2 linearly indenpendent solutions, which
we shall denote by

Oy k=1,..., n(n+1)2,

where k denotes the ordinal number of that solution. The condition of sol-
vability of the inhomogenous equation (3.1.9) is reduced to the orthogonality

condition of ' and p) ,i-e.

(3.1.41) [fi edydB=0, k=1,..., n(n+1)2.

In the case when the number of dimensions of the space & is odd, the
above condition is satisfied, but if # is even, the condition cannot be satisfied.

For example, if n=2 then fi (i=1,2) cannot be orthogonal to p(L) (k=1,2,3),
and this is seen also for every other even n,i.e., n=4,6,...
For the completing of the proof of the theorem we have the
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Remark. When the space & possesses an odd number of dimensions, then
an exterior problem is uniquely solvable, but if n is even then the satisfaction of
the condition (3.1.41) is impossible and therefore, it is indispensable that v has
a logarithmic growth in the vicinity of infinity.

At the end we shall remark that by functional method generalized solu-
tions of the Nevier-Stokes equations may be defined, but it we will not speak
about it here.
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