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1. Introduction. In this paper we consider the collection of non-
empty closed subsets of a topological space X, often called hyperspace of X,
topologized by means of collections of open subsets submitted to the axiom
(x;) below and, in dealing with some other properties of these topologies, also
to the axioms («,;) and («;). According to E. Michael [3], the hyperspace of X
shall be denoted by 2* and we shall follow Michael in terminology and nota-
tions as well as in the way of introducing topologies on 2%, although our
approach is axiomatical and modified so to include various topologies on 2*
and on its subsets. The main result of this paper is the Theorem stating when
2* is compact provided X is compact and which has various consequences
(among them the Tychonoff Theorem on compactness of the product space).

2. Way of topologizing 2* and some examples. We start
with some definitions. An arbitrary element from 2* is denoted by F and a
fixed one by F,. U stands for an open subset of x and }/={¥V} for a collec-
tion of such subsets.

A collection of open sets in X is a cover of the set F < 2* denoted by ]/ (F), if
FCcU{U.UEc}/(F)} and UNF#®, for each U € J/ (F).
A family of such covers is denoted by o (F).

For }/={U}, let |]/| be the union of all elements belonging to the sets
vell,i e [)|=U{U:UEec}}

A cover )|’ refines }{ if for each U < }/ there is U’ €}/’ such that U' C U
and that |}/'| C |}{|, and then we write )| =<]/'.

These two definitions are well-known and we only want to take them
here in the above sense. It is easily seen that a family « (F) of covers of a
set F is a partially ordered set with respect to the relation =<, i. e.

. . Uy (F) =< ][, (F)
if }/, (F) refines 7/, (F).

The class {a (F): F & 2*} shall be denoted by « (analogy with the symbols f (x)
and f for a function and its value at x), and we shall suppose that the fol-
lowing axiom is satisfied:

_ 1 Read at the Congress of mathematicians, physicists and astronomers of Yugoslavia
in Sarajevo, 3 — 10 Oct. 1965.
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(aty) For each F < 2%, a (F) is a directed set with respect to the relation =<,
It is easy to verify that the axiom («,) is satisfied in the following examples:

Example 1. « (F) is the family of all )/ (F), where
I (Fy={U:UD>D F}.
Example 2. « (F) is the family of all }/ (F), where }/ (F) is a fi-
nite cover of F.
Example 3. « (F) is the family of all // (F), such that }/ (F) con-
sists of a finite number of open sets together with the whole X.

Example 4. « (F) is the family of all }/ (F), where
U (F)={Uo; Up ..y Un}.

The set U, contains F and the others intersect F.
Example 5. « (F) is the family of all locally finite covers of F

Now, we can consider « as a function with the domain 2* and the range
a subclass of the class of all open coverings of the sets F & 2*. Given «,
we follow Michael [3], or indirectly Vietoris [6], in defining a topology on 2%
For F, € 2*and ]/ (F,), let

WU F)={F:F €2 FC|}/|, FNU#®, for U € }/ (Fy)}-

The family of all }/* (Fy), }/ (Fy) € « (F,) shall be denoted by a* (F;) and
the class of all «* (F), F € 2* by a*.

Proposition 1. The collection o* (F) is a base of open neighborhoods
of F & 2% for a topology on 2%,

Proof. 1. F, € )/* (F,), for Fy C|}/|and Fy N U#® for each U < }/ (F,).
2. Let )/f (F) and }/; (F,) be two neighborhoods of F,. Then, according
to the axiom (), there is a cover }/, (F,) refining both }/; (F,) and }/, (F,).

So, for t=1,2:
Fclly (F)=>F C|]fo| and FNU#®, U €}/,
=>F C |}){x| and FNU#®, U & )/, Y}/,
since for each U & )/v there isa U, © 1o such that U, C U. 3. Being F C |}/
and FNU#®,U c )/ for each F € }/* (F,) it follows that }/* (F,) = }/* (F) € «*(F).

The topology which, according to the Proposition 1., exists on 2%, we,
shall call a* — topology and the pair (2%, o«*) a* — hyperspace of X.

The following proposition, which is easily proved, shows how some of
the well-known topologies on 2* can be defined in the same way, choosing
only different types of covers 7/ (F).

Proposition 2. For a topological space X, o* — topology on 2*
induced by the systems of covers in the given examples 1—4 is identical with

a) the topology of the space » X of V Ponomarev [4].

b) the finite topology of Michael [3],

c) the topology of the classical space of closed sets (V. Ponomarev [4]).

d) the hemi-semi-finite topology of Michael [3] respectively.

Let7:X — 2* be such a mapping that t (x) = {x} (where {x} is the sin-
gleton x). Then, according to E. Michael, an «* — topology is admissible if
i is a homeomorphism. It seems reasonable to add to the axiom («,) the
following one.



Topologies on collections of closed subsets 127

(2, For all F € 2%, each ][ (F) € o« (F) is a point finite cover.

Both of these axioms («;) and («,) shall be supposed in the sequel. Now,
we can prove the following

Proposition 3. The mapping T:X— 2% is continuous.

Proof. For a fixed {x} € 2* and an arbitrary cover }/ ({x}) in view
of (), 2/ ({x}) must be a finite cover, i. e.

U (2D ={Us, Uy ...r Un.
Taking into account that {U}, Uo=_F\ U: asa cover which refines 7/ (F)

7=}

then {|7/,|}*" X is a neighborhood of x in X which is mapped into 2/* ({x}).
From the proof of the preceeding proposition we have the following.

Lemma 1. If B,={U} is a base of neighborhoods of the point x < X,
then B,y ={U*} is the base of neighborhoods of {x} € 2*.

If we suppose the following axiom

(«3) For an arbitrary open set U containing x € X, there is )/ ({x)} € x ({x})
such that U € U ({x});

then we can prove

Proposition 4. If (a;) is satisfied ((v,) and («,) are supposed to
be), then the topology o* is admissable,

Proof. For an arbitrary neighborhood of x, there is 7/ ({x}) con-
taining U. Since }/ ({x}) must be finite 7/ ({x})={U, Uy, ..., U,} the set U} NX,

U,=U ﬂ?\ U; , is mapped back by r—! into U, so that t—! is continuous and
by Proposition 3., it follows that i is a homeomorphism.

Consequence of Proposition 4. The topologies induced by the covers in exam-
ples 1-4 are admissable,

3. Compactness of 2% In this part we show that the compactness
of X implies (2%, «*) is compact provided the two topologies are ,close* to
each other. Note that a*-topology need not be admissable. We use the notion
of universal net in proving the following theorem (see J. L. Kelley [1] and [2]).

Theorem. If X is a compact topological space and if for every F < 2%,
the cover }/ (F) € a (F) is finite, then the space (2*, «*) is compact,

Proof. Suppose X is compact. Let
¢y {Fo:a € A}
be a universal net in 2* and let
S.=U{Fg:f=a}, B € 4.
It is obvious that the family {S,:« 4} has the finite intersection property
and so does the family of closed sets {Sy:a € A4}. Since X is compact, the set
Fo=n{§“:a = A}

is nonempty and closed. We intend to prove that F, is a cluster point of
the net (1). Let

U F)={Uy; - U}
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be a cover of F, which is supposed to be finite. Then,

@) Fa CIUFE)|=U Uz,

T=1

from an index on. In the opposite case there would exist a cofinal subset 4,
of A, such that

Fan | (FQ#®, o« € 4y

Choosing then x, € FxN|}/ (Fy) |, the net {xq; « € 4,} is in the closed set
|2/ (F)|” which is also compact. So, this net has a cluster point Z ¢ |7/ (F)|
and also Z ¢ F,. Now, let O be a neighborhood of z. Then for any « € 4
there is a B=>o such that xg € O. So, xg € Fa C S., what means that S, N O#®

for each o € 4; or else that z € S, and the conclusion that z& N {§a rac A} =F,
is a contradiction, what proves (2). Further on, choose x;, &€ Fy N U,. Then,

x € Sy and S, NU,#® for each a € A, what means that there is a cofinal
subset 4, of A such that F,NU,#® for a € 4,. Let

U ={F:F € 2* and FNU,#®}.

We have shown that the net (1) is frequently in U; and being universal, it
must be eventually in U,. This means that there is an index «, € A4 such that

F,NU,#®, for a=a,.
1t is proved in the same way the existence of an «; & A such that
F.NU;: # @, for a=a;

where i=1, 2, ..., n. Choosing o & A to be greater then all «; and that for
«>o the relation (2) is satisfied; we see that the net (1) is eventually in the
arbitrary neighborhood of F,, what implies its convergence to F,. Since each
universal net in 2* is convergent this space is compact.

Consequence 1. The hyperspaces determined by covers given in exam-
ples 1-4 are compact.

In our next example we intend to obtain the topological product space
as the subspace of a hyperspace

Example 6. Let X be a topological space and 9 ={D} a decompo-
sition of this space into closed subsets. Let }/ () be the family of open sets
which are complements of a finite collection of closed sets each belonging to
aDeD If «:2*—}/ i. e. all covers are chosen from }/ and if two axioms
(o) and (a,) are satisfied then we shall call (2%, «*) the hyperspace 9. There
are, of course, more different hyperspaces of this kind, all depending upon
the choice of covers }/ (F) and the decomposition 9.

Let {Xy; £ € Z} be a collection of compact Hausdorff spaces and
X=2{Xy ¢ € Z}

their topological sum. Edch Xy is closed (and open) in X. Let X=X U ()
be one point compactification of X. Now, we are going to give a more spe-
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cific example of a 9 hyperspace and we point out that the main difference
between this example and those given in the part 2., is in the fact we use
here not the whole class of open sets but its subclasses.

Let XG-@n—X~ [_U Xg{-] and Oy C X¢ be open. Then,

=1
o (F)y={X%%; O, ..., Oz}

If D={D} is decomposition of X consisting of Xy and o let & be the family
of F € 2% such that FN D is single point. Then, we have

Lemma 2. The space (F, «*) is homeomorphic to the topological pro-
duct space X {X¢, { € Z} and G is a closed subset of 2%,

Proof. The proof of the first part is entirely straightforward and so
omitted We shall prove the second part. If Fy € 2.\ /? and is such that
Fyn X¢=@ for some { & Z, then the nelghborhood U (Fy), U (Fy) = {XC} does
not contain any F < &f. Otherwise, Fy n Xy contains more then one point for
some {, say, x, y & Fyn X¢. Taking two disjoint neighborhoods O% and O% of
x and y respectively, we find that }/* (F), 1/ (F)={X% O% O} is disjoint
from J/* (Fp)-

Being 2% compact as it follows from the Theorem and using the above
lemma we have

Consequence 2. (Tychonoff) The topological product of compact spa-
ces is compact,

Let, now, X be a normed linear space, 2* its hyperspace with the topo-
ogy of Michael; then we can prove this

Lemma 3. If {Cy; « € A} is a net of convex sets converging to F, € 2%,
then F, is convex.

Proof. Suppose F, is not convex. Then, there are two points x, y, € F,

and a Z €  nty xy such that Z ¢ F,. Choose the sphere S (Z, €) C Fo and
we can suppose without loss of generality Z=0. Taking

U F)={S (Z,¢), x+8(Z,¢), y+S (Z, &)}

and choosing a less ¢, if necessary, so to be x+S (Z,¢) and y+ S (Z,2)

contained in S (Z, €)'. If C, € )/* (F,), there will exist a € Cy  (x+ 8 (Z, €)) >
beCun (¥+5(Z,¢). Then, Z=ax+By, a+f=1, x>0, >0, so we have

lea+Bbl=|a (a— x)+B(b ol
Salla—x[[+B]b—yll<e

Since C, is convex, « a+Bb € C, and w a+B b & S (Z, <), what contradicts
Co— F,,.

Our next consequence is known as Blaschke Convergence Theorem (see
F. Valentine [5]).

Consequence 3. Let /[ be a uniformly bounded infinite collection of
closed convex sets in a Minkowski space L, Then /f| contains a sequence which
converges to a nonempty compact convex set.

Proof. Let S be a closed sphere containing ,//. Then, S is compact,

9 Publications de !’Institut Mathématique
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so that 2% is also compact with respect to the topology of Michael (which
coincides with topology induced by Hausdorff metric). According to the Pro-
position 4.5 of Michael [3], 2* is first countable so that there is a sequence
in o/f{ converging to a C, € 25. C, is convex as it follows from Lemma 3.
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