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1. Introduction. Mainra [3] has defined
© — 1
(1.1) Bp (V=] 8ua N LG Vy dy. R (@, A 9> = —;
0

and has established that &, a (x) is a Fourier kernel and plays the role of
a transform.

Bhatnagar [1] has defined

(1.2) By, v (X) =f°°6>u, x (xft) Iy (t)d—i, (A v) = ——1—;
0 l/t 2

and proved that this is also a Fourier kernel and plays the role of a
transform.

Further the integral equation

(1.3) $(p) =pf e~ f(1) at, R(p)>0;
0
is symbolically denoted as

b(P)=1(@) or fI)=¢(p)s
where ¢ (p) is known as the classical Laplace transform of f(¢).

In this paper, we shall establish that if f(¢)==¢ (p), g(!)==¢ (p) and
the two originals f(t), g(¢) are related by any of the Fourier kernels defined
above, then their images ¢ (p), @ (p) are also related by one of the Fourier
kernels different from the first one and vice — versa. We may add that
converse theorems can be proved either under similar conditions or under

modified conditions. As &y, a (X) and &, », v (x) involve Bessel functions, it
i1s well-known that R(u, A, v)>—1. So at some places in the conditions we
have not mentioned it as this is implied. For self-reciprocity we take

1
Ru, \, V)= ——.
(1 A, v) 5
(2.1) 2. Let f(t)=4¢(p)
(2.2) and F(at) =x(p/a).
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Applying Goldstein’s theorem [2] to (2.1) and (2.2), we get
o dx o dx
23) [70) % (xfa) == [ g (%) Fax) =,
0 X 0 X

provided the necessary change in the order of integrations involved are
permissible and the integrals converge.

Putting a = iand interpreting with the help of (2.2), we get
p

-4 b d
2.4) [Fom 169 %= F Fexip p 09 2.
0 X 0 X
Let us put F(t)=1"&,, 2 (1/t) in (2.4). We get
@5y [ au,n () Fx)x1=mdxzzpm 6, (p/%) ¢ (x) X7 dx.
0 0
Now Mitra and Bose [4] have proved that if f, (£)==¢, (p),

26)  then £+1 [, (12) £ (2) = dz==p ™ [ oyt (p2) 4y (2) 2 d,
0 0

1
RV)=z——.
™) 5
Making use of (2.5) in (2.6), we get

1 I, () 2 dz [, (x]2) £(x) x71-m dx
0 0

= p = ot (92) 277 d2f By (213) § (6) m =1 .
0 0

Changing the order of integrations on both the sides and putting

~

© 1 P i
o+ P ) x" T dx [Gu (/2 4, (12) 277 dz
0 0

hoed

p= [ G T dx [0 @) Jos 02) VEdz,
0

0

1
provided x’"2{ (x) and x~ f(x) are bounded and absolutely integrable
in (0, ©) and R (p., v, )\,+%)>0.

On writing z/t for z on the L h.s. and z/p for z on the r. h.s. and
making use of the definitions of &,, 1+, (x) and &) , (%), the above can be

written after a little change as

! o

I
@7 T [l @) fXTT " dx p 3 [t (xlp) § (1/x) x7F .
0 1]
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| 1
Let us put ¢ (p)=p "~ 2 [ &+ (x/p) Y (1/x) x™2 7 "dx=r.h.s. of (2.7)
0

1 . 1
ie.p "2 ¢ (1/p) is the &)1 (x) transform of 24 (1/p).

Taking g (t) =@ (p), we get
) SN 1
g(t)=tv+7 f &y a v (%) £(x) x 727" dx=1h.s. of (2.7),
V]

1 1
which shows that ¢~ "2 g(¢) is the @&, », v(¥) transform of ¢~ ~2f(¢f). Thus:

1
Theorem 1. Letf(t?i—;(b(p),g(t)i—._dn(p) andp™" "7 ¢(1/p) be the
@'+l (x) transform of p "7 y(/p).

1 1
Then 1 "2 g(t) will be the &,, », +(x) transform of t~" 72 f(¢), provided
x'~ 2 ¢ (x) and x—* f(x) are bounded and absolutely integrable in (0, ),

g(t) and "7 f @y, 2, v (@) f(x) x”z Y dx are continuous functions of ¢ in
(0,7) and R (u, A\ v,+%)>0.

Further let x™°~ 2 $(1/x) be RF;; then from (2.7), we have

1 o

FE F i () £ 5727 dx 0 (p). But §(p)==£(0).

0

1 o

@38) =T F o (0 ) 2T d,

0

1
which shows that x™ 72 f(x) is Ry, 1, v, provided both the sides of (2.8) are
continuous functions of ¢.

Thus:

1
Cor. 1. Let f(t)=={ (p) and “““7¢(1/x) be R.%. Then x™°7Z f(x)
will be Ru x v» provided the cond1t1ons of the theorem are satisfied and

[f (1) — 2 f Sy, v(X) f(X)x 2 de is a continuous function of t.
Again puttmg A=v+1in (2.7), we can wriie it after changing the sides as

29 p7 fJu(x/p) VTp o (Ux) 2" dx

-

1
=p f et tv+—2‘dtf By, vrt, v (%) £(x) 7 dx
o

<

i
0\8

1 o
By, vi1, v (X) x—“'T[p [ e f(x/t) > dt]dx
0

I

o 1 0
[ Bu, vt v () X777 [pr e f(1/t) t¥ dt ]dx
0 0
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= ["u vrt,v () F(p) ¥' T d, [assuming F(p) <= 1 f(1/))
0

1
Let &(p) be the Hankel-transform of order w of x™ "% ¢ (L)

x
Then from (2.9), we get

p —% E_,(l/p) =fo&u, wrt1, v(X) F(px)x’ —Jf dx
0
or E(I/p)=f°6)u, i1, v (x/p) F (x) x”-%dx,
0

1
which shows that & (p) is the &,, .1, v (x) transform of p'~Z F(p).
Thus:
Cor. 2. Let f()==4(p), 1*¥ f(1/t)==F(p) and £(p) be the Hankel-
1

transform of order w of x~"72 ¢ (1/x).

1
Then & (p) will be the &,, v41, v (x) transform of p’' ™7 F (p), provided
the conditions of the theorem hold good.

Further, if we put 1» f(1/t)= f(7) in the above corollary, we get U (p) =
F(p). Hence we have
Cor. 3. Let f(t)=r>f(1/t), f()=={¢(p) and £(p) be the Hankel-
1

transform of order u of x7'77 ¢ (1/x).

1
Then € (p) will be the &,, v.1, v (x) transform of p°~% ¢ (p) provided
the conditions of the theorem hold good.

Again, we know that if f(£)==¢ (p),

d n . d n
(2.10) then (:—) FO= =1y (p) 4 )
dt dp
Making use of the above relation in (2.7), we get
1

@1 T P, () [ (x dii)f &) ] x T dvmp T [ (xjp) x
0 0

o [(— 1)"[—L —dT] ¢ (1) } VT dx,
X d_

X

1 n 1 n
provided x~'772 (xi) S(x)and x 77 14 ¢ (1/x) are bounded and
dx) X d—l »
x
absolutely integrable in (0, o).
Now proceeding in the same manner as in theorem 1, we have the
following theorem:
i
Theorem 2. Let f()=={(p), g()==@ (p) and p~" "2 ¢ (1/p) be the
e | "
é@yty (x) transform of (—1)" p™ 77— il $ (1/p).
' P 4=
J2



On certain transformations in operational calculus 87

1
Then ¢t~ *"2g(¢) will be the &,, », v(¥) transform of

t_"“% (t g—t)n f(), provided x‘“‘% (x %)n f(x) or x (xg;)”f(x)

xd_‘

1 n ’
and x™"72 [—1— _f%]  (1/x) are bounded and absolutely integrable in (0, oo).
x

Cor. Let f(1)=={¢ (p) and (—1)nx—”-%{i J-IT‘ ¢ (1/x) be R¥;.
. :

d=
X
1 n
Then t~'72 (tg-) f(®) will be Ry, », ,, provided the conditions of the above
t

theorem hold good.

Similarly,
1

Theorem 3. Let f(t)=y(p), g(1)==¢ (p) and p~" "2 ¢ (1/p) be the

1
&uls (x) transform of p~" "2 ¢ (1/p).
1 1
Then ™"~ 2 g (¢) will be the &,, 2, » (x) transform of ™72 f7 (1), pro-
vided f7(0)=0, r=0,1,...., n—1; x¥f"(x) and x™" ¢ (1/x) are bounded
and absolutely integrable in (0, o).

Cor. Let f(t)—'_?lxp(p), fr(©0)=0, r=0,1,2,....,n—1, and x“""—%ap(l/x)

be R,'5. Then t™72 fn(¢) will be Ry v, provided the conditions of the

above theorem hold good.

Here we make use of the following relation in place of (2.10), i.e. If
FB)==0(p), then fr(f)=p"(p), provided f7(0)=0, r=0,1,2,...., n—1,
and proceed in the same way as in theorem 2.

I am very much thankful to Dr. S. C. Mitra for his help and guidance
in the preparation of this paper.
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