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ONE-PARAMETER METHOD FOR CALCULATIONS OF NON-STEADY
LAMINAR BOUNDARY LAYERS

Milan Purié
{Communicated feb. 20, 1963)

For the present there are not general methods of the Gortler’s type, of the
type of exact solutions, for solving the problem of non-steady laminar boundary
layers, but there are approximate methods. Namely, Struminsky and Rozin in
their studies [1], [2] have shown the possibility of applying ideas of one~parameter
methods of steady boundary layers on non-steady ones, where Rozin has come
to the practically applicable solution. But, although the problem has been l-
nearized, i.e.has been reduced to linear partial equation, there still remained the
arithmetical difficulty. Beside this method, it is necessary to mention also Targ’s
method, [2] which is not bound on momentum egquations.

In this paper, as it will be further shown, it has been attempted, starting
from momentum equations, to arrive at a simpler solution of single approximations,
represented by ordinary integrals . The procedure of practical solution of the prob-
lem is more simpler and shorter, inasmuch as a little less exact, because there is
the possibility of solving only equations for the first two approximations.

The differential equations and momentum equations

The differential equations of unsteady plain laminary boundary lavers
have the following form
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where

x - the distance along the wall of the contour which is encircled by the
fluid;
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v - the vertical distance from the wall of the contour;
;- time;

u (x, v, 1) and 2 (x, y, 1) — the component of the velocity of the current in x
respectively v in the direction;

v — the kinetic viscosity;
U (x, 1) — the velocity of the external potential current outside the boundary
layer.

On the base of the physical justification, representing the velocity of the
current within the boundary layer in the expression

w( ) = w (530 + Gy + .

we shall obtain the differential equations for the first and for the second approx-
imation. The differential equations for the first approximation have the following
form
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with boundary and supplementary conditions
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while for the second approximation we have the following differential equations
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(39
du 0%u
u = 0; *5; =0; ()y;w{), for y=o00.

Integrating the differential equations by the thickness of the boundary
layer, and introducing the displacement thickness 8*, the momentum thickness
3** and the skin friction ~ with expressions

o e

0 Q

0



One-parameter method for calculations of non-steady laminar boundary layers 19

o ﬁ( mz> :f@< __> ~ f@ﬁs _
&) SfUlUdyUl dy—2 dy
4] )

u u o

0w

0

éul> o

(6) _{L(dv) <<3y >y I @y =Ty + T

we have the momentum equations for the two cited approximations
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The transformation of momentum equations

For the transformation of the first of the two momentum equations, we
shall suppose that the velocity u, is the function of the parameter f,.

uo(%, 35 1)

€ | U ¢ (15 fo)s

2.

where %= 5.

We shall determine the parameter f, from the condition

(0 f"‘( )n 0 :ZUU ’

where, and this will be also in future, with indeces denoted, the partial derivative
by respective coordinates.

Now, the relation of the momentum thickness and of the displacement thick-
ness 1is

o

= jcp (1= o) dy=H** (fo),

0

S**
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and for the skin friction is obtained the expression

Ouy

wU,
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Because of expressions 10, 12, the equation 7 is transformed into the form
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For the transformation of the equation 8, we shall suppose that the velocity
uy is the function of the parameter f,.

]4 4 (X, V> [> .
(14) U(x, 0) = ¢y (113 f1)s
v . . .
where 7, = FE and f; — is the new parameter which we shall determine from
1

the condition
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Because of expressions 10, 11, 15 and 16, the equations 8 is transformed into
the form

an (Gl T) ) f*V P, { |5+ (1
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By this way, we have obtained two differential equations for the determination
of parameters f, and f, and of unknown functions %y (f,) and %, (fy).

The determination of unknewn functions

To determine the functions %4 (fy) and 4 (fy) it ought to be given some
determined profile of velocity on the intersection of the boundary layer. We shall
take the Pohlhausen’s type of profile

u
(199 6’ =0 (03 %) =ay 0+ @i+ aynt tagrd

v C .
where 1= and %, -local parameter of the form which is determined from the
{

condition

; o d"*ga) *32U
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Satisfying the boundary and supplementary conditions, we shall obtain
the profile of velocities in the form

) 1= () (1= + 2 (1 =7

=2
U
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Now, on the base of 97, 4 and 5, the displacement thickness and the mo-
mentum thickness are for the first approximation

3
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We find the skin friction from the expression

o T c)u0> U(.?.*r"
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%LU-2~:* 6 = b(hg).

and from there
(20)

From expressions 10 and 10" we can find easily the connexion of the para-
meter f, and .

(3 %
21 f"‘(]o 120

From 20 on account of 18 is obtained the expression for the characteristic
function Z,="1%; ().

22) = <2 % >< T 120 = G (o),

and because of the connexion 21

C=5 (fo)-

For further work we need also the function Hy** (f,) which we shall deter-
mine after the expression 11 as the relation of the momentum thickness and the
displacement thickness

1 N
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0
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The functional dependence $5=1{y (fy) and Hy** = Hy** (f,) in the form
of the diagram

We shall also assume analogously the profile of velocity for the second ap-
proximation in the form of the polynomial of the fourth degree

, u
(147 l} =¢ (5 0) = byt by + byn® + by,

where 7 = Jsi , and x, — is the convective parameter of the form which is determi-
ned by conditions
d? 32U
(15/) 7\1 - - (l:1> - x )
an* /m—0 v

Satisfying boundary and supplementary conditions, we obtain the family
profiles for the second approximation

23

1 77\71 — 3
(147) U—671(1 )3

Now, on the base of the expressions 14", 4 and 5 we can give the displace-
ment thickness, the momentum thickness and the skin friction in the function
of the given parameter
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and the skin friction

56”7
respectively
T
(26) jff = 63

From the expressions 15 and 15" we find the connexion of the parameter
f1and %

27) o=
120
The characteristic function & we find from the derivatives 26 and 24
}‘12 4
(28) L= - §0 " 4 (s

or, because of 27

L=4A ).
The linearization of equations

As one sees from the diagram, the characteristic function %, (fo) deviates
ittle from the straight line, so, it can be approximated with that one

(29) L (fo)=a+bfe

Because of the cited approximation, the equation 13 receives the form

, YU Ua |y, U
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with the solution
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If it is, as it exists at the flow past a body. U =0 at, t= 0, then, for the aim of
the finality at t= 0, it must be C==0, and the solution receives the final form

1

(30) fo= 2._‘“";—?]1 f Uil g,

0

To solve the equation 17, we introduce instead of the parameter f,. the
parameter ,; through the connexion 27 and finding the relation of the parameter
#o and 2, through 10" and 15" we shall reduce the equation 17 to its new form
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As one sees from the diagram, the function Hy** depends on slightly of
fo> and so one can put

dHo*
d.o
and because of this, the expression 31 is reduced to the form
, fo Jo ( vuu,,
= \[-= e Hy** Hy**) ¢t
(319 F(fo) iU U U X+ 2 (1 + 2 Hy*®)

The solution of the equation 17’

t
U,'ls . [1 U,'ls
Uz/sf(UUx) /3[3 + F(fo)]dr+C1 D
0

7y =40 -

If at 1 =0, the velocity is U =0, then, for the finality of the solution at =0,
1t must be C;=0, and therefore

(32) 2y =40 - Uf [(UUX)Z/s [ vF(fO)]dt ,

or, if we return to the parameter f; through the connexion 27

(33) fi= %) ;{f(Uwas[ +F(f0)]dz} :

If the function of velocity of the external potential current is given in the
form which will appear most frequently,

ie.
U(x, t)=U(x) - Q(z),
then that simplifies much the solutions
14

" 2a Q
(307 fo£232bf£232b| dr
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z

(33 f=?g{f0[; +F(fo)] dz} ,
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where U = U,y — the function of external velocity at the stationary state.
Q=Q(r)~ function which shows the character of unsteadiness. With (*) re-
spectively (’) is designed the differentiation by ¢ respectively by x.

The function F(f,) for this case is reduced to the form

F(fy)= 2\/{—3 (1+2 H**)=2.(0,53492 — 0,0104497 2, — 0,0002204 2,2 ),

because f,=0. Respectively, because of the connexion 21 one obtains the final
form for this function..

(31 F(fy) = 2 (0,53492 + 0,02646 f, — 0,738 f,2).

We find the point of separation from the expression for the skin friction
ou
5{;)3’ == 0,
of what is

(34) fot+fi=—192.

We shall now determine the regularity of constants a and &. One sees from
the diagram that the curve {(f,) deviates little from the straight line. We shall
ask that this deviation ought to be the least in the most important field of change
of the parameter f, ie. in the interval fj = - 1.92 to f, = 0. And this is just
the interval that the point of separation passes from the first moment of separation
to the attainment of the steady state. The minimal deviation of the curve from
the straight line in this interval gives the values of constants

a= 0,58, b=103.

Now, finally we can write the solution which is practically useful
L

" L16Q (o
(30 ) fo == "ZﬁrfgzlAd[,

0
z

. 40 U'3 o 3
(33 fi=gg ot | Q01+ 6(0,53492+0,02646, — 0,738 £l dr |
b

(34) S+ A= 192,

From the equation 34’ for every moment of time we can determine the po-
sition of the point of separation. Generally, in practical problems the interesting
question is the first moment of separation of the boundary layer from the contour.

Application
1. Let us observe the case of the cylinder which is put rapidly into motion
For this case is

Ulet) = U =2 Ugp, sz‘n-g .

From the condition 34" one obtains for the first moment of partition

tod 0,275 2,
U

respectively the trajectory performed by the cylinder till that moment
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Sod = tod- Uoo = 0,275 R.
By the Struminsky-Rozin method [2] the obtained value is
Sod == 0,300 R.
By the Targ method [2]
Sod == 0,250 R.
Bv Goldstein and Rosenhed [3] the obtained value is
Sod = 0,320 - R.

2. Let bring now the cylinder into uniform motion, then
UCe, 1) = U() - 1= 2b - sz’n% o,
and from the condition 34" one obtains
R
tod - - 0,94 -,
0 0,9 b

and tor the trajectory performed by the cylinder till the moment of separation.
the obtained value is

Sod -+ 0,44 R.
Blazius by a mathematically stronger method has obtained the value

tod == 1,02 %,
Sod = 0,52 R.

The comparison of methods and some conclusions

In this part we shall make some observations which have been observed on
these some examples. Namely, the question is about the following. For the case
of the cylinder which is put into motion by a sudden jerk, Blasius, stopping at
the second approximation, obtained the value for the first moment of time of
separation

R
tod == l——-o,
od == 0,35 U
and Godstein and Rozenhed, stopping at the third approximation, obtained the
value

R
- 5
tod = 0,32 T

o0
that makes the difference of about 99.
By the Struminsky-Rozin method, the obtained value is

R
tod = 0,300 T

[>a]
and we have obtained

R
tod == 0,275 T

which represents a deviation of about 99%,.

If the Struminsky-Rozin method is taken as the exact one from these two
approximate methods, then one sees that the deviation of our method is about 9o,
and also this deviation would have been less if for example the Loitsianskii-Kotchin
or the Falkner-Skan profile had been taken, as in the case of the Struminsky
Rozin method. In the class of exact solutions the deviation between the second
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and the third approximation is also 99,. These results should be verified on a much
greater number of examples. But, one can still make the assertion, though not to
be too quick in making generalization before it would have been demonstrated on
a much greater number of examples, that it would be already sufficient to stop
at the third approximation, so that the error would not be too great. This means,
and this is probably also right, that already the third approximation would bring
us quite in the domain of exact values. Thus, in the case of exact methods, it
would be probably sufficient to stop at the third approximation.

If spite of the fact that this method gives about 99; less good results than the
Struminsky-Rozin method, for practical calculations, where one should come
quickly to results, this method could applied quite successfully.

The case of rotational bodies

Let us observe now the unsteady laminar boundary layers on rotational
bodies which are defined by the radius of the transversal crossection r = r(x).
For this case the differential equations have the form
Gn G0, 0w U L LoU o

' or  “ox T Yoy o ox oy

(2.2) gg*:*) 9 gryv) =

0,

with boundary and supplementary boundary conditions

oU  _oU Pu B
u:v:()’g.tT U;)—;* ~va—y—2,f0ryv—0,
2.3) N 5
u u
e A T

Analogously, as in the case of plane boundary layers, we shall start also here from
the differential equations for the first two approximations, and write the momentum
equations for these two approximations

a(U3* 1
@7) o e ™

o(Us, * O3, ** oU ! 1
(2.8) Laz;) U U (Bt 28 %%) +: Uag** — =

If we compare these two equations with those plane cases, we shall see that
the only difference is in the momentum equation for the second approximation.,
That means, that for the first approximation the solutions will be the same as
at the plane boundary layer, while for the second, the form of the solution will
be the same, and the difference will appear in the form of the function F(f,).
Namely, in this case, beside the function F(f,) will appear also a supplementary
member, i. e., it will be

, rF
F (fo) = F(fo) + : g 21/ {0 Hy* >,

ot oo
4 -
F1(f0) N F(fo) i 2 V' Ux Pz(fo)-
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For obtaining final solutions, it is necessary to investigate the function F(f,).
We shall present it graphically. Because of the connexions 21 and 23, the function
F, will have the form

37 2 g

315 945 9072
while the graphic the following

F; (1) =

; R
0,20;
i
l 015
| | E(fo) ool T
|
; o,os}
|
L ;
] - 0 o i

One sees from the diagram that the function F, depends slightly on f, and so,
approximately, we can take it as the constant

F,=ua.
Now, we can finally write the solution, and this at once for the case when
Ux,t) = Ulx) - Q). It follows

. t
, 1,16 Q
e fi=grit [erar,

0

[2

'3
£ = E‘%%- fma[x + 6(0,53492 ~ 0,0264 f,—
, 3
/ _ 2y 4 Z.U d
(2.33) 0,738 f) + 62" U,] el

and we find the separation point also from the the condition
(2.34) fo+fi=—192.
For the value of the constant « one can take the approximative mean value
o= 0,1180778.

Let us solve now an example: Let the sphere of the radius R put into
motion by a sudden jerk. For this case
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. X 3 . X
r(x):Rsm}—e, U(x)z)zano Sitt 5>

From the condition 2.34 taking into account the expressions 2.30" and 2.33’
one obtains for first moment of time of separation the value

tod = 0,30757 &

oo

TABLES OF CHARACTERISTIC FUNCTIONS

1

2o % fn :u Hu** i F Fy

13 04772 | 07985

12 04800 0,8000 0,44500 037784

1 04774 07989 | 0.44434 0,39335

10 04694 0,7944 0,44255 0,40837

9 10,4556 07875 044015 0,42305

8 04355 07777 043776 043724

7 04086 07653 043290 045097

6 03750 0,7500 042892 0.46429

3 0.3336 0,7319 042392 : 047716

4 02844 07111 041814 0,48960

3 0,2269 0.6875 041237 1 050159 |

2 0,1605 0.6611 | 040559 = 051314 |

1 0,0850 06319 | 039815 | 052425 |

0 0,0000 06000 | 039166 | 053492 . 0,11746
— 1 — 00954 = 05647 | 038417 054515 © 011842
— 2 — 02004 0,5277 037650 |  0.55494 .  0,11914
— 3 — 03169 04375 036861 | 056492 . 0,11972
— 4 — 04444 0.4444 0.36003 | 057319 |  0.11993
— 5 — 05835 03986 035119 | 058166 | 0,12022
— 6 - 0,7350 0.3500 0.34256 ©  0,58967 0.11984
— 7 — 08624 ' 02935 033352 059727 . 0.11991
— 8  — 10716 02444 0.32423 060441 0,11887
— 9 — 1265 . 0875 0.31493 0.61112 & 0.11854
— 10— 14692 | 0.1277 030543 061738 0.11702
— 1l | — 16869 | 00653 029570 .  0.62320 011688
— 12 — 19200 0.0000 028600 062858 011429
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