## REMARKS ON THE CAUCHY FUNCTIONAL EQUATION

## Svetozar Kurepa

(Communicated May 22, 1964)

In this Note  $R = \{x, y, ...\}$  denotes the set of all real numbers and  $R_0 = \{x \mid x \in R, x \neq 0\}$ . A function  $f: R \to R$  is said to satisfy the Cauchy functional equation if

$$f(x+y) = f(x) + f(y)$$

holds for all  $x, y, \in R$ . A function  $f: R \rightarrow R$  is termed a derivative on R if f satisfies the functional equation (1) and

$$f(xy) = x f(y) + y f(x)$$

holds for all  $x, y \in R^1$ 

In [1] we have proved the following theorem:

Theorem I. Suppose that f and  $g \neq 0$  are two solutions of (1) and that

$$g(x) = P(x) f(1/x)$$

holds for all  $x \in R_0$  where P is a continuous function on R subject to the unessential condition P(1) = 1.

Then

(4) 
$$f(x) + g(x) = 2 f(1) x (x \in R)$$

and the function

$$F(x) = f(x) - x f(1)$$

is a derivative on R.

This theorem in the case f = g implies that a function f which satisfies (1) and  $f(x) = x^2 f(1/x)$  for  $x \in R_0$  is a continuous function. This solves the problem No 638 in The New Scottish book given by Prof. Israel Halperin in 1963. (See. Coll. Math. XI<sub>1</sub> (1963) p. 140), by which this work was also motivated. It is the object of this Note to generalize Theorem I. We get also another proof for this Theorem. We have

<sup>&</sup>lt;sup>1</sup> For the existence of a nontrivial derivatives on R see [2] pp. 120-131.

Theorem 1. Suppose that f and  $g \neq 0$  are two solutions of the Cauchy functional equation (1) and that there is an integer  $n \neq 0, -1$  and a continuous function  $P: R_0 \to R$ , subject to an unessential condition P(1) = 1, such that

$$(5) g(x) = P(x) f(1/x^n)$$

holds for all  $x \in R_0$ .

Then

(6) 
$$P(x) = x^{n+1}, \ n \ f(x) + g(x) = (n+1) f(1) x$$

holds for all  $x \in R$  and the function

$$F(x) = f(x) - x f(1)$$

is a derivative on R.

Conversely: If F is a derivative on R, f(x) = ax + F(x) with a constant  $a \in R$ , g(x) = a(n+1)x - nf(x) and  $P(x) = x^{n+1}$ , then f and g are solutions of the Cauchy functional equation (1) and (5) holds for every  $x \in R_0$ .

Corollary 1. Suppose that a function  $f: R \to R$  satisfies the Cauchy functional equation (1) and that

$$a f(x) = x^{n+1} f(1/x^n)$$

holds for all  $x \in R_0$ , where  $n \neq 0$ , -1 is an integer and  $a \neq n$  a constant. Then f(x) = x f(1) holds for all  $x \in R$ .

**Proof of Theorem 1.** We devide the proof in several steps.

I. The function P is of the form:  $P(x) = x^{n+1}$  ( $x \in R_0$ ). In order to prove this we replace x by r x ( $r \ne 0$ ) in (5) where from now an r denotes a rational number. We get

$$r g(x) = P(rx) \frac{1}{r^n} f\left(\frac{1}{x^n}\right)$$

which together with (5) leads to:

(7) 
$$\left[ \frac{P(rx)}{r^{n+1}} - P(x) \right] f\left(\frac{1}{x^n}\right) = 0.$$

If we multiply (7) with P(x) and use (5) we get

(8) 
$$\left[\frac{P(rx)}{r^{n+1}} - P(x)\right]g(x) = 0.$$

Now  $g \neq 0$  implies the existence of  $x_0 \neq 0$  such that  $g(x_0) \neq 0$ . But then (8) implies:

$$P(rx_0) = r^{n+1} P(x_0),$$

for all rational numbers  $r \neq 0$ . Using the continuity of P we find

(9) 
$$P(x x_0) = x^{n+1} P(x_0)$$

for any  $x \in R_0$ . Replacing x with  $x/x_0$  in (9) we get

$$P(x) = x^{n+1} \frac{P(x_0)}{x_0^{n+1}}$$

which because of P(1) = 1 implies:

$$(10) P(x) = x^{n+1}$$

for any  $x \in R_0$ . Hence (10) and (5) imply:

(11) 
$$g(x) = x^{n+1} f(1/x^n) \qquad (x \in R_0).$$

If we set

(12) 
$$G(x) = g(x) - x g(1)$$
 and  $F(x) = f(x) - x f(1)$ 

then (11) implies f(1) = g(1) so that (12) and (11) lead to

(13) 
$$G(x) = x^{n+1} F(1/x^n) \quad (x \in R_0).$$

The functions F and G are solutions of the Cauchy functional equation (1), they satisfy (13) and F(r) = G(r) = 0 for every rational number r.

II In order to prove Theorem 1 it is sufficient to prove that F is a derivative. Indeed if F is a derivative then  $F(x) = -x^2 F(1/x)$  and  $F(y^k) = k y^{k-1} F(y)$  for any natural number k together with (13) leads to

$$(14) G(x) = -n F(x).$$

This is obvious if n < 0. In the case m = -n < 1 from (13) we get  $x^{m-1}$   $G(x) = F(x^m) = m \ x^{m-1}$  F(x), i.e.  $G(x) = m \ F(x)$  which implies (14).

From (14) Theorem 1 immediately follows. Now to prove that F is a derivative it is sufficient to prove that

$$(15) F(x^2) = 2x F(x)$$

holds on R. Indeed if in (15) we replace x by x+y we get:

$$F(x^2 + 2xy + y^2) = 2(x+y) F(x+y)$$

which because of  $F(x^2) = 2x$  F(x) and  $F(y^2) = 2y$  F(y) implies F(xy) = x F(y) + y F(x). Thus we have to prove the relation (15) only. In order to do this the case of positive n and of negative n are to be distinguished.

III Suppose that  $m = -n \ge 2$  is a natural number.

Then (13) becomes:

$$F(x^m) = x^{m-1} \quad G(x).$$

Replacing x with x+r in this relation, using the fact that  $F(r^m)=0$  and  $m \ge 2$  we get

$$F\left[m\,r^{m-1}\,x+\,\frac{m(m-1)}{2}\,r^{m-2}\,x^2+\,\cdot\,\cdot\,\right]\,=\,\left[r^{m-1}+(m-1)\,r^{m-2}\,x+\,\cdot\,\cdot\,\right]G(x),\,\mathrm{i.\,e.}$$

(16) 
$$m r^{m-1} F(x) + \frac{m(m-1)}{2} r^{m-2} F(x^2) + \cdots = [r^{m-1} + (m-1) r^{m-2} x + \cdots] G(x).$$

The equation (16) is an equation between two polinomials of order m-1 in r. From here by comparing coefficients of  $r^{m-1}$  and  $r^{m-2}$  we get:

$$m F(x) = G(x)$$
 and  $\frac{m(m-1)}{2} F(x^2) = (m-1) x G(x)$ 

which implies  $F(x^2) = 2x$  F(x). Thus in the case of  $n \in \{-2, -3, \cdot \cdot 4\}$  (15) is proved.

IV Suppose that n is a natural number. For an irrational number x we apply the function G on the identity:

(17) 
$$\frac{1}{x-r} - \frac{1}{x+r} = 2r \frac{1}{x^2-r^2}$$

We get:

$$G\left(\frac{1}{x-r}\right) - G\left(\frac{1}{x+r}\right) = 2 \ r \ G\left(\frac{1}{x^2-r^2}\right)$$

which because of (13) becomes:

$$\frac{1}{(x-r)^{n+1}} F[(x-r)^n] - \frac{1}{(x+r)^{n+1}} F[(x+r)^n] = 2r \frac{1}{(x^2-r^2)^{n+1}} F[(x^2-r^2)^n].$$

We have therefore:

(18) 
$$(x+r)^{n+1} F[(x-r)^n] - (x-r)^{n+1} F[(x+r)^n] = 2 r F[(x^2-r^2)^n],$$
i. e.

$$[r^{n+1} + (n+1) \ r^n x + \cdots] \ F \left[ n(-r)^{n-1} x + \frac{n(n-1)}{2} (-r)^{9-2} x^2 + \cdots \right]$$

$$- \left[ (-r)^{n+1} + (n+1) (-r)^n x + \cdots \right] F \left[ n \ r^{n-1} x + \frac{n(n-1)}{2} r^{n-2} x^2 + \cdots \right]$$

$$= 2 r F \left[ n (-r^2)^{n-1} x^2 + \cdots \right].$$

Since this equation is an equation of two polinomials in r, we may compare the corresponding coefficients. Comparing coefficients of  $r^{2n-1}$  we get

$$\left[ (-1)^{n-2} \frac{n(n-1)}{2} F(x^2) + (-1)^{n-1} (n+1) n x F(x) \right] - \left[ (-1)^{n+1} \frac{n(n-1)}{2} F(x^2) + (-1)^n (n+1) n x F(x) \right] = 2(-1)^{n-1} n F(x^2)$$

from which follows  $F(x^2) = 2 x F(x)$ .

Q.E.D.

## REFERENCES:

- [1] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces Glasnik mat. fiz. astr. 19 (1964), 23—36.
- [2] O. Zariski and P. Samuel, Cummutative algebra. D. von Nostrand Company Inc. 1958.