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A bounded operator F acting in a Hilbert space H is idempotent if
F?=F. Since this equality implies |F|2z|/F|, we have | F||=1 if F#£0. It
is well known that an idempotent F3£ 0 is a projection (a self adjoint idempotent)
if and only if || Flj=1.

Denote by H;={x& H, Fx=x} the range and by H,={x < H, Fx=0)
the null space of F. The sets H, and H, are closed subspaces of H. Let P
and Q bz the projections onto H; and H,. Since the equality x = Fx 4+ (I—F) x,
where 7 is the identity operator, implies that any vector x € H can bz written
in the form x=y-+z, where y=Fx<E H, and z=(—F)x &< H,, the Hilbert
space H is a direct sum of the subspaces H, and H,. Therefore, PN Q=0
and PUQ=1I

The adjoint operator F* is also idempotent. Its range is the subspace
Hi=H%, where Hi denotes the orthogonal complement of H,, and its null
space Hy=H{. Hence, the corresponding projections are I—Q and [—P.

In this paper we shall study in some detail the connections which exist
between an idempotent operator F, its projections P, @, and the products FF*, F*F,

1. Let P and Q be two projections. We can ask whether there exists an
idempotent operator F having P and Q for its projections. The answer to
this question is as follows:

Theorem 1. P and Q are the projections onto range and null space
of a bounded idempotent operator F if and only if PU Q=1 and || PQ| <1.
In this case we have
4))] F=(I—PQP)y*(P—PQ).

Remark. The condition || PQ || <1 implies || PQP| <1. Consequently, the
operator ([—PQP)-1 exists and is bounded.

Proof. Let P and @ be the projections onto range and null space of a
bounded idempotent operator F. For any x € H the vectors PQx and (/- P) Ox
are orthogonal. Therefore || PQx |2+ (J—P) Qx|?=| Qx|?* and

(2) [ POxf= | Qx [P~ Qx—PQx |F<| x [*—{| Qx—PQOx .
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Since Qx € H, and PQx < H,, we have F(Qx—PQx)= — PQx. Hence, || POx || =
<||F|l|| Qx—PQx|. From inequality (2) we now obtain

| pOxi2< iy iz L POX
| Pox|slixiP—To
whence o
, v HER I x P
PQX | 2 < A LI LG ;
| POx|| AL

therefore || PQ||<|[F||/s/1+ | F|? < 1. Since we already know that PU Q =1,
the conditions stated in theorem 1 are necessary.

Conversely, let us suppose that P and @ are projections such that
PU Q=TI and || PQ| <1. The last condition obviously implies that P N Q0.
If an idempotent operator F with the projections P and @ exists, then any
vector x € H can be wrilten in the form x=y-+z where y=Fx & H; and
z=(—F)x € H,. Since Py=y and Qz~-z, we have

3 Px=Py+Pz=y4 Pz
and
¢ Ox=Qy+Qz=0y+2z.

From the last equality we obtain z= Ox—(Qy= QOx— QPy. Substituting this
expression for z in the equality (3) we get Px=y+ PQx—PQPy, i.e.

(I—PQP)y=Px—PQx.

Now, the inequality /| PO (|<1 implies the existence of (/—PQP)~!, and the-
refore,
y=({—PQP)y-Y(Px—PQXx), 2= 0x— Q(I—PQP)"}(Px—PQx).

If we put
) F=(I—PQP)™ (P—PQ),

then y=Fx and z=Q ([—F)x. The operator F is idempotent. In fact, since P
commutes with /—PQP, it commutes also with the inverse (/—PQP)-™
Hence F=P(I--PQP)*(P—PQ) and

F2=({—PQP)"1(P—PQYP(I—PQP)  {P—PQ)=P(I—-POPYy Y (P—PQ)==F.
Moreover, it is easily seen that the following relations are valid
(6) FP=P, PF=F, FQ=0.

Denote by H, and H, the range and the null space of F. The two first
relations (6) imply that H,c H,’ and H,’'< H,. Hence, H,'=H,. From the
third relation we have H,C H,. Let now be x€ H,', thus Fx=0. From (35)
one obtains: Px—PQOx=0. If we put y=x—0x, we have Py=0 and Qy=0,
Since PU Q=1 it follows that y=0, i.e. Ox=x and x& H,. Hence, H,' = H,.
The idempotent operator F defined by (5) has P and Q for its projections.
Theorem 1 is therefore proved.

2. Let us consider the products FF*¥*=4 and F*F=B. The operators 4
and B are self adjoint and positive. Since A*—A =(FF*—F)(FF*—F)*z0,
the open interval (0, 1) belongs to the resolvent set of 4. The same of course
is true of B. If || 4] =1, then 42— A4 <0, therefore A2*—A=0 and FF*=F,
so that F is a projection in this case.
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If we take for F the expression (1) we get
A—(I—PQP)-1P, B=(QP—P)(I—PQP)-*(P—PQ).
Let us compute the products 484 and BAB:
ABA ~ (FF¥*)(F*F)(FF*) = FF¥FF* = 42,

Similarly BAB-=B* These relations are characteristic of self adjoint opera-
tors A and B which can bz written as the products FF* and F*F, where F
is an idempotent operator. We have namely the following:

Theorem 2. The equations
) FF*=4, F*F=B

can be solved with an idempotent operator F if and only if A and B are sely
adjoint opzrators satisfying the relations

® ABA= A%, BAB - B
F is uniquely determined.

Proof. We already know that the conditions (8) are necessary. Let now 4
and B be any self adjoint operators satisfying (8) and acting in a Hilbert

space H. Denote by H{ the null space of A, Hi —{x& H, Ax~-0}, and by H,
the null space of B, Hy={x& H, Bx=0}. The set H, and the orthogonal
complement H; of Hi are closed subspaces of H. Let P, Q, be the corres-
ponding projections. Then we have

® AP=PA~A4, BQ=QB=0

Since (ABA)x= A%x, i.e. A(BA—A)x=0, the vector (BA—A4) x belongs to Hi.
Hence P(BA—A)x=0 or PBA—A = 0. Taking adjoints we get also ABP—A4=0.
Therefore A (BPx—x)=0 for any x € H, consequently BPx—x = H{i, i.e. PBPx—
—Px=0. Hence

(10 PBP=P.
In the same manner we obtain
(10%) (I—-Q)A(U—Q=1-0.

If self adjoint operators A and B satisfy relations (8), then they are =0.
In fact, from (8) we deduce

A% = AA*= A*BA = ABABA = AB*A = (AB) (AB)* = 0.

Since A4 is self adjoint, this inequality implies 4=0. Similarly B=0. Now,
from (8), (9) and (10) we deduce

an PB2P == PBABP = PBPAPBP =PAP=A.
In the same way we get from (10%)
(11%) - AL(1—-Q)=B.

Since P as a projection is positive, we conclude that BPB=0 and, by com-
puting (BPB)® we get:
(BPB)?= BPB2PB =~ BAB = B*,

Yet, each positive operator has a unique positive square root. Hence, BPB=B.
Similarly we get A(J—Q)A=A.
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Now, let us define the operator F by
(12) F—PB, thus F*=8P

Since F2=PBPB= PB=F, the operator F is idempotent. Also FF* =PB*P=A
and F*F-—=BPB=B. We have found a solution of equations (7). The condi-
tions (8) are therefore sufficient.

This solution of (7) is unique. For, suppose F and G are idempotent
operators such that

GG* = FF*, G*G=F*F,
then G-~ F. In fact, since
G*G([—F)=F*F(I—F)=0,

we have G (J—F)-=0, thus GF=G. Similarly the first equality yields F*G* = F¥,
Taking adjoints we have GF=F. Hence G~ F. This completes the proof of
theorem 2.

The previous proof of the existence of F was geometric, but we can
also prove this fact algebraically. Let, therefore B be a C*-algebra with an
identity 1. If A and B are self adjoint elements of B satisfying relations (8),
then there exists an idempotent element FE B such that FF*=A and F*F=B.

The proof of this statement runs as follows: First, from (8) we obtain
the relations
(13 AB"=A"B, n=1,2,3,...

In fact, (11) is an identity for n=1. If this equality holds for some nz1,
then :
AB" 1= A"BB - A"BAB = A" ABAB = A"+1B.

Hence, (13) is true also of n+1, and therefore, it holds for each n=1.

Next, we have
(14) AB"A = A1 BA"B = Bnt1,

These equalities follow immediately from (8) and (13).

We already know that equations (8) imply 4 =0 and Bz0. From (14)
we get A(B—IPA=A—A4% and B(A—IPB=B*—B? Since A(B—I? A=0
and B(A—IPB=0, it follows 43— A4*=0 and B*—B?=0. These inequalities
imply that the open interval (0, 1) lies in the resolvent set of 4 and of B.

If A=0, then B=0. In this case we have F=0. Now, let us suppose
A#0. It follows from (14) that [[A|"t1<||B|"|| 4|2 thus ||A]**<[ B|"
Since this holds for all n=z I, we have || 4]} <|| B|. Similarly we get || B|I<|| 4]l
Hence || A||=||Blj=1. If we put e=1/[[4| ~1/|Bl, then O0<e=1. Let us
now consider the sequences
(15) R,=({I—cdy, S,=(I-—eB)".

The difference of any two consecutive members is

R.—R,p =cA(I—c Ay, Sy—Sps1=cB({I—=cB)"
An easy computation shows that the spectrum of the products e 4 (f—ecA)"
and ¢B(/—eB)" lies in the interval (0, (I—e)®) if » is sufficiently large. It

follows that || R,i1—Ra||=(1—ey* and || Sy1;—S,{|<(1—e)". Therefore, the
sequences R, and S, are convergent. Let R=lim R,, S=1im S, be their limits,

then R, S& 3. Since R = Ran, S5=-Sg,,, we have R2==R, S2=S8. Thus, Rand S
are projections.
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In the same way we can establish that the sequences {4R,} and {BS,)}
converge to zero, so that AR=RA4A =0 and BS=SB~=0. Furthemore, it is not
difficult to deduce from (13) and (14) that the relations

BU—R)=(U—-S)A, A(I—S)A=A(J—R,), B{I—R)B=B{I-S)
hold for all n=1. Taking here the limites we find

B(I—Ry=(I-8)A4, A(I-S)YA=A(I—Ry=4, B(I—RyB=B(I—S)=B.

Let us define the operator FE U by
(16) F=A4({I-9%
F is idempotent. In fact.
' FP—A([—S)A(I—S)=A(I—S)=F.
Since F*=(I—S8) A, we have also
FF*=A(I—Sy¥A=A4, F*F={~-S)A*(I—-S)=B(—R)?*B=B8.

Therefore, F is a solution of equations (7) and belongs to the algebra O.

. 3. In the previous section we studied the equations (7) and found the
conditions which must be fulfilled by 4 and B so that (7) is solvable by an
idempotent operator F. Now, let us consider the first equation only

(17 FF* = 4.

The question arises whether there is an idempotent operator F satisfying this
equation. Obviously, 4 must be positive and self adjoint. Assume first that
A=nP, where P is a projection and the real number n=1. If n=1, then
clearly F= A4 =P, because FF*=P=A4. Now let be >1, and suppose that a
solution F of (17) exists and that P,, Q are its projections. Since

FF*=(I—P,QP)~' P; and FF*=A=1P,
the following equation must hold
(18) P,=7P—7PP,QP;.

Multiplication by P on the left yields PP, =%P—nPP,QP, = P,, hence Py=nP—
—P,QP,. If we multiply this by P;, we get Py=nP,—nP,QP,. It follows
P, = P. The equation (18) can therefore be written in the form

(18%) rop-1"1p
K/
Now, let us consider the operator
= 7
(19) Us=A/—1 P————— QP
Vn—1

Taking into account (18%) we find U*U=P. Hence, U is a partially isometric
operator and, consequently, the product UU* is also a projection. The sub-
spaces of H corresponding to P and UU* have the same dimension. Since
PU =0, the projection UU* = I—P. Hence, denoting by dim E the dimension
of the range of a projection E, dim Psdim(J—P). Since A==P and n>1,
the range of the projection P is the subspace where 4>1.
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This partial result can be generalized as follows:

Theorem 3. Let A be a bounded self adjoint operator such that
A2— A2 =0 and let E, be its spectral resolution of the identity, then the equation
(17) is solvable by an idempotent operator F if and only if dim (J—E,)<dim E,.

Proof. a) First, let us suppose that there exits an idempotent operator
F satisfying (17) and let F=({—~PQP)*(P—PQ), where P and Q are the
projections of F. Then A4=(/—PQP)-'P. We already know that 4=0 and
A?2—A=0, thus £2—A2=0.

Let us now consider the operator 7=QP and let
T=V|T|, T*=|T|V*
be its canonical decomposition, where V is a partially isometric operator and
1 1

|T|=(T*T)* =(PQP)*. If we denote by N the null space of T and by N*
the null space of T*, thus N={x<H, Tx=0} and N*={xE€ H, T*x=0},
then the base space of V is the subspace H © N and the range of Vis H O N*.
The projections onto ¥ and N* are (|—P)+ PN {I— Q) and ({[— Q)Y+ O N ({{—P),
therefore
E=V*V=P_PN(I—Q)sP, E'=VV*=Q0—QNU—P)=0Q.
i H

We have also E|T|=V*V|T|=|T| and P|T|=P(PQP)* =(PQP)* =|T|. Let
us consider the product PV. First, we have PV|T|=PT=PQP=|T[] Next,

(PV—|T\Y(V*P—|T|)=P(VV*) P—PV|T|—|T|V*P+|T]F=P(VV*) P—|T}
Since the inequality VV*<Q implies P(VV*)P<PQP~|TP}, we have
(PV—|T)(PV—|T)*=0.

It follows that PV =|T|.
Let us define U by
1

U=(T|—V)y—|TpH 2

U is a bounded operator and such that PU=0. Since |T|V=|T|PV=|T}
we get
(T|=V*(T|=V)=E—=|TP=EU—|T[

and therefore U*U=E. Hence, U is a partially isometric opeator, consequently,
the product UU* is also a projection. Because PU=0, it is UU*< I P.
The subspaces of H corresponding to E and UU* are isomorphic, have thus
the same dimension.

Let E, be the spectral function of 4. We know that 4 =0 and that the
open interval (0, 1) belongs to the resolvent set of A; hence Ej = 0if A=0
and Ey=E,_,. It follows that E,=E,+(E,—F,_¢) is the projection onto the
null space of 42— 4. On the other hand, the equality

A2— A —(I— PQP)-2(PQP) = (I—| T[H)=2| T2

implies that the operators A2—4 and |T| have the same null space. Since
the null space N of T coincides with that of | 7|, we conclude that E, is the



Cn Idempotent Operators in a Hilbert Space 163

projection onto N. This implies E=/I—E;. Now, it follows from E;=I—P,
U*U=FE and UU*=I—P, that dim (/—E)=dim E=dim UU*=dim E,.
The conditions of theorem 3 are thus necessary.

b) Conversely, let us suppose that a self adjoint operator A4 satisfies
these conditions. First, we infer from A3—A?2=0 that E, = 0 for A<<0 and
E,=E,_,, where E; is the spectral function of 4. If we put P=I—E,, we

have PA=AP=A and from A———P:f (»—1) dE, we conclude that A-—Pé().
—0

1
1

Thus (4—P)2 exists. Moreover, because dim (/—E;)=dim E,, there is a par-
tially isometric operator U such that U*U=IJ—E, and UU*=<]—-P=E,.
Hence PU=0. Let ¢(3) be any function of the real variable A, measurable
for =0 and such that | (3)|=1. Define the operator F as follows

1

F=P—g(A)(4—P)* U*.
©(A) is a unitary operator which commutes with P. Since PU=U*P=0 and
1 1

(AwP)vizP(A—P)E“, we have F2=F, so that F is idempotent. On the other

hand,
1

F¥=P—U(A—P) 5 (4)

An easy computation gives FF*=A. Thus, we have found an idempotent
operator F satisfying (17). The conditions of theorem 3 are therefore also
sufficient.
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