ON IDEMPOTENT OPERATORS IN A HILBERT SPACE

Ivan Vidav

(Presented 17. Avril 1964)

A bounded operator F acting in a Hilbert space H is idempotent if $F^2=F$. Since this equality implies $||F||^2 \ge ||F||$, we have $||F|| \ge 1$ if $F \ne 0$. It is well known that an idempotent $F \ne 0$ is a projection (a self adjoint idempotent) if and only if ||F|| = 1.

Denote by $H_1 = \{x \in H, Fx = x\}$ the range and by $H_2 = \{x \in H, Fx = 0\}$ the null space of F. The sets H_1 and H_2 are closed subspaces of H. Let P and Q be the projections onto H_1 and H_2 . Since the equality x = Fx + (I - F)x, where I is the identity operator, implies that any vector $x \in H$ can be written in the form x = y + z, where $y = Fx \in H_1$ and $z = (I - F)x \in H_2$, the Hilbert space H is a direct sum of the subspaces H_1 and H_2 . Therefore, $P \cap Q = 0$ and $P \cup Q = I$.

The adjoint operator F^* is also idempotent. Its range is the subspace $H_1^* = H_2^1$, where H_2^1 denotes the orthogonal complement of H_2 , and its null space $H_2^* = H_1^1$. Hence, the corresponding projections are I-Q and I-P.

In this paper we shall study in some detail the connections which exist between an idempotent operator F, its projections P, Q, and the products FF^* , F^*F .

1. Let P and Q be two projections. We can ask whether there exists an idempotent operator F having P and Q for its projections. The answer to this question is as follows:

Theorem 1. P and Q are the projections onto range and null space of a bounded idempotent operator F if and only if $P \cup Q = I$ and ||PQ|| < 1. In this case we have

(1)
$$F = (I - PQP)^{-1}(P - PQ).$$

Remark. The condition ||PQ|| < 1 implies ||PQP|| < 1. Consequently, the operator $(I-PQP)^{-1}$ exists and is bounded.

Proof. Let P and Q be the projections onto range and null space of a bounded idempotent operator F. For any $x \in H$ the vectors PQx and (I-P)Qx are orthogonal. Therefore $\|PQx\|^2 + \|(I-P)Qx\|^2 = \|Qx\|^2$ and

(2)
$$||PQx||^2 = ||Qx||^2 - ||Qx - PQx||^2 \le ||x||^2 - ||Qx - PQx||^2.$$

158 Ivan Vidav

Since $Qx \in H_2$ and $PQx \in H_1$, we have F(Qx - PQx) = -PQx. Hence, $||PQx|| \le \le ||F|| ||Qx - PQx||$. From inequality (2) we now obtain

$$||PQx||^2 \le ||x||^2 - \frac{||PQx||^2}{||F||^2}$$

whence

$$||PQx||^2 \le \frac{||F||^2 ||x||^2}{1 + ||F||^2};$$

therefore $||PQ|| \le ||F||/\sqrt{1+||F||^2} < 1$. Since we already know that $P \cup Q = I$, the conditions stated in theorem 1 are necessary.

Conversely, let us suppose that P and Q are projections such that $P \cup Q = I$ and ||PQ|| < 1. The last condition obviously implies that $P \cap Q = 0$. If an idempotent operator F with the projections P and Q exists, then any vector $x \in H$ can be written in the form x = y + z, where $y = Fx \in H_1$ and $z = (I - F)x \in H_2$. Since Py = y and Qz = z, we have

$$(3) Px = Py + Pz = y + Pz$$

and

$$(4) Qx = Qy + Qz = Qy + z.$$

From the last equality we obtain z = Qx - Qy = Qx - QPy. Substituting this expression for z in the equality (3) we get Px = y + PQx - PQPy, i.e.

$$(I-PQP) y = Px-PQx$$
.

Now, the inequality ||PQ|| < 1 implies the existence of $(I-PQP)^{-1}$, and therefore,

$$y = (I - PQP)^{-1}(Px - PQx), z = Qx - Q(I - PQP)^{-1}(Px - PQx).$$

If we put

(5)
$$F = (I - PQP)^{-1}(P - PQ),$$

then y = Fx and z = Q(I - F)x. The operator F is idempotent. In fact, since P commutes with I - PQP, it commutes also with the inverse $(I - PQP)^{-1}$. Hence $F = P(I - PQP)^{-1}(P - PQ)$ and

$$F^2 = (I - PQP)^{-1}(P - PQ)P(I - PQP)^{-1}(P - PQ) = P(I - PQP)^{-1}(P - PQ) = F.$$

Moreover, it is easily seen that the following relations are valid

(6)
$$FP = P, \quad PF = F, \quad FQ = 0.$$

Denote by H_1' and H_2' the range and the null space of F. The two first relations (6) imply that $H_1 \subset H_1'$ and $H_1' \subset H_1$. Hence, $H_1' = H_1$. From the third relation we have $H_2 \subset H_2'$. Let now be $x \in H_2'$, thus Fx = 0. From (5) one obtains: Px - PQx = 0. If we put y = x - Qx, we have Py = 0 and Qy = 0. Since $P \cup Q = I$, it follows that y = 0, i.e. Qx = x and $x \in H_2$. Hence, $H_2' = H_2$. The idempotent operator F defined by (5) has P and Q for its projections. Theorem 1 is therefore proved.

2. Let us consider the products $FF^* = A$ and $F^*F = B$. The operators A and B are self adjoint and positive. Since $A^2 - A = (FF^* - F)(FF^* - F)^* \ge 0$, the open interval (0, 1) belongs to the resolvent set of A. The same of course is true of B. If ||A|| = 1, then $A^2 - A \le 0$, therefore $A^2 - A = 0$ and $FF^* = F$, so that F is a projection in this case.

If we take for F the expression (1) we get

$$A = (I - PQP)^{-1}P$$
, $B = (QP - P)(I - PQP)^{-2}(P - PQ)$.

Let us compute the products ABA and BAB:

$$ABA = (FF^*)(F^*F)(FF^*) = FF^*FF^* = A^2.$$

Similarly $BAB = B^2$. These relations are characteristic of self adjoint operators A and B which can be written as the products FF^* and F^*F , where F is an idempotent operator. We have namely the following:

Theorem 2. The equations

$$(7) FF^* = A, F^*F = B$$

can be solved with an idempotent operator F if and only if A and B are self adjoint operators satisfying the relations

$$ABA = A^2, \quad BAB = B^2.$$

F is uniquely determined.

Proof. We already know that the conditions (8) are necessary. Let now A and B be any self adjoint operators satisfying (8) and acting in a Hilbert space H. Denote by H_1^{\perp} the null space of A, $H_1^{\perp} = \{x \in H, Ax = 0\}$, and by H_2 the null space of B, $H_2 = \{x \in H, Bx = 0\}$. The set H_2 and the orthogonal complement H_1 of H_1^{\perp} are closed subspaces of H. Let P, Q, be the corresponding projections. Then we have

$$(9) AP = PA = A, BQ = QB = 0$$

Since $(ABA) x = A^2 x$, i.e. A(BA-A) x = 0, the vector (BA-A) x belongs to H_1^{\perp} . Hence P(BA-A) x = 0 or PBA-A = 0. Taking adjoints we get also ABP-A = 0. Therefore A(BPx-x) = 0 for any $x \in H$, consequently $BPx-x \in H_1^{\perp}$, i.e. PBPx-Px = 0. Hence

$$(10) PBP = P.$$

In the same manner we obtain

$$(10*) (I-Q) A (I-Q) = I-Q.$$

If self adjoint operators A and B satisfy relations (8), then they are ≥ 0 . In fact, from (8) we deduce

$$A^3 = AA^2 = A^2BA = ABABA = AB^2A = (AB)(AB)^* \ge 0.$$

Since A is self adjoint, this inequality implies $A \ge 0$. Similarly $B \ge 0$. Now, from (8), (9) and (10) we deduce

(11)
$$PB^{2}P = PBABP = PBPAPBP = PAP = A.$$

In the same way we get from (10*)

$$(11*) (I-Q) A^2 (I-Q) = B.$$

Since P as a projection is positive, we conclude that $BPB \ge 0$ and, by computing $(BPB)^2$ we get:

$$(BPB)^2 = BPB^2PB = BAB = B^2$$
.

Yet, each positive operator has a unique positive square root. Hence, BPB = B. Similarly we get A(I-Q)A = A.

Now, let us define the operator F by

(12)
$$F - PB$$
, thus $F^* = BP$

Since $F^2 = PBPB = PB = F$, the operator F is idempotent. Also $FF^* = PB^2P = A$ and $F^*F = BPB = B$. We have found a solution of equations (7). The conditions (8) are therefore sufficient.

This solution of (7) is unique. For, suppose F and G are idempotent operators such that

$$GG^* = FF^*$$
, $G^*G = F^*F$,

then G - F. In fact, since

$$G^*G(I-F) = F^*F(I-F) = 0$$
,

we have G(I-F)=0, thus GF=G. Similarly the first equality yields F*G*=F*. Taking adjoints we have GF=F. Hence G=F. This completes the proof of theorem 2.

The previous proof of the existence of F was geometric, but we can also prove this fact algebraically. Let, therefore $\mathfrak B$ be a C^* -algebra with an identity I. If A and B are self adjoint elements of $\mathfrak B$ satisfying relations (8), then there exists an idempotent element $F \in \mathfrak B$ such that $FF^* = A$ and $F^*F = B$.

The proof of this statement runs as follows: First, from (8) we obtain the relations

(13)
$$AB^n = A^nB, \quad n = 1, 2, 3, \dots$$

In fact, (11) is an identity for n=1. If this equality holds for some $n \ge 1$, then

$$AB^{n+1} = A^nBB = A^nBAB = A^{n-1}ABAB = A^{n+1}B$$
.

Hence, (13) is true also of n+1, and therefore, it holds for each $n \ge 1$.

Next, we have

(14)
$$AB^{n}A = A^{n+1}, \quad BA^{n}B = B^{n+1}.$$

These equalities follow immediately from (8) and (13).

We already know that equations (8) imply $A \ge 0$ and $B \ge 0$. From (14) we get $A(B-I)^2A = A^3 - A^2$ and $B(A-I)^2B = B^3 - B^2$. Since $A(B-I)^2A \ge 0$ and $B(A-I)^2B \ge 0$, it follows $A^3 - A^2 \ge 0$ and $B^3 - B^2 \ge 0$. These inequalities imply that the open interval (0, 1) lies in the resolvent set of A and of B.

If A=0, then B=0. In this case we have F=0. Now, let us suppose $A\neq 0$. It follows from (14) that $||A||^{n+1} \le ||B||^n ||A||^2$, thus $||A||^{n-1} \le ||B||^n$. Since this holds for all $n \ge 1$, we have $||A|| \le ||B||$. Similarly we get $||B|| \le ||A||$. Hence $||A|| = ||B|| \ge 1$. If we put $\varepsilon = 1/||A|| = 1/||B||$, then $0 < \varepsilon \le 1$. Let us now consider the sequences

(15)
$$R_n = (I - \varepsilon A)^n, \quad S_n = (I - \varepsilon B)^n.$$

The difference of any two consecutive members is

$$R_n - R_{n+1} = \varepsilon A (I - \varepsilon A)^n$$
, $S_n - S_{n+1} = \varepsilon B (I - \varepsilon B)^n$.

An easy computation shows that the spectrum of the products $\varepsilon A (I - \varepsilon A)^n$ and $\varepsilon B (I - \varepsilon B)^n$ lies in the interval $(0, (1 - \varepsilon)^n)$ if n is sufficiently large. It follows that $||R_{n+1} - R_n|| \le (1 - \varepsilon)^n$ and $||S_{n+1} - S_n|| \le (1 - \varepsilon)^n$. Therefore, the sequences R_n and S_n are convergent. Let $R = \lim_{n \to \infty} R_n$, $S = \lim_{n \to \infty} S_n$ be their limits, then $R, S \in \mathcal{B}$. Since $R_n^2 = R_{2n}$, $S_n^2 = S_{2n}$, we have $R^2 = R$, $S^2 = S$. Thus, R and S are projections.

In the same way we can establish that the sequences $\{AR_n\}$ and $\{BS_n\}$ converge to zero, so that AR = RA = 0 and BS = SB = 0. Furthermore, it is not difficult to deduce from (13) and (14) that the relations

$$B(I-R_n) = (I-S_n) A$$
, $A(I-S_n) A = A(I-R_n)$, $B(I-R_n) B = B(I-S_n)$

hold for all $n \ge 1$. Taking here the limites we find

$$B(I-R) = (I-S) A$$
, $A(I-S) A = A(I-R) = A$, $B(I-R) B = B(I-S) = B$.

Let us define the operator $F \in \mathfrak{B}$ by

$$(16) F = A(I - S)$$

F is idempotent. In fact,

$$F^2 = A(I-S) A(I-S) = A(I-S) = F.$$

Since $F^* = (I - S) A$, we have also

$$FF^* = A(I-S)^2 A = A$$
, $F^*F = (I-S) A^2 (I-S) = B(I-R)^2 B = B$.

Therefore, F is a solution of equations (7) and belongs to the algebra \mathfrak{B} .

3. In the previous section we studied the equations (7) and found the conditions which must be fulfilled by A and B so that (7) is solvable by an idempotent operator F. Now, let us consider the first equation only

$$FF^* = A.$$

The question arises whether there is an idempotent operator F satisfying this equation. Obviously, A must be positive and self adjoint. Assume first that $A = \eta P$, where P is a projection and the real number $\eta \ge 1$. If $\eta = 1$, then clearly F = A = P, because $FF^* = P = A$. Now let be $\eta > 1$, and suppose that a solution F of (17) exists and that P_1 , Q are its projections. Since

$$FF^* = (I - P_1 Q P_1)^{-1} P_1$$
 and $FF^* = A = \eta P$,

the following equation must hold

$$(18) P_1 = \eta P - \eta P P_1 Q P_1.$$

Multiplication by P on the left yields $PP_1 = \eta P - \eta PP_1QP_1 = P_1$, hence $P_1 = \eta P - \eta P_1QP_1$. If we multiply this by P_1 , we get $P_1 = \eta P_1 - \eta P_1QP_1$. It follows $P_1 = P$. The equation (18) can therefore be written in the form

$$(18*) PQP = \frac{\eta - 1}{\eta} P.$$

Now, let us consider the operator

(19)
$$U = \sqrt{\eta - 1} P - \frac{\eta}{\sqrt{\eta - 1}} QP$$

Taking into account (18*) we find U*U=P. Hence, U is a partially isometric operator and, consequently, the product UU* is also a projection. The subspaces of H corresponding to P and UU* have the same dimension. Since PU=0, the projection $UU* \le I-P$. Hence, denoting by dim E the dimension of the range of a projection E, dim $P \le \dim(I-P)$. Since $A=\eta P$ and $\eta>1$, the range of the projection P is the subspace where A>1.

This partial result can be generalized as follows:

Theorem 3. Let A be a bounded self adjoint operator such that $A^3-A^2 \ge 0$ and let E_{λ} be its spectral resolution of the identity, then the equation (17) is solvable by an idempotent operator F if and only if dim $(I-E_1) \le \dim E_0$.

Proof. a) First, let us suppose that there exits an idempotent operator F satisfying (17) and let $F = (I - PQP)^{-1}(P - PQ)$, where P and Q are the projections of F. Then $A = (I - PQP)^{-1}P$. We already know that $A \ge 0$ and $A^2 - A \ge 0$, thus $A^3 - A^2 \ge 0$.

Let us now consider the operator T = QP and let

$$T = V \mid T \mid$$
, $T^* = \mid T \mid V^*$

be its canonical decomposition, where V is a partially isometric operator and $|T| = (T^*T)^{\frac{1}{2}} = (PQP)^{\frac{1}{2}}$. If we denote by N the null space of T and by N^* the null space of T^* , thus $N = \{x \in H, Tx = 0\}$ and $N^* = \{x \in H, T^*x = 0\}$, then the base space of V is the subspace $H \ominus N$ and the range of V is $H \ominus N^*$. The projections onto N and N^* are $(I-P) + P \cap (I-Q)$ and $(I-Q) + Q \cap (I-P)$,

$$E = V^*V = P - P \cap (I - Q) \le P$$
, $E' = VV^* = Q - Q \cap (I - P) \le Q$.

We have also $E|T|=V^*V|T|=|T|$ and $P|T|=P(PQP)^{\frac{1}{2}}=(PQP)^{\frac{1}{2}}=|T|$. Let us consider the product PV. First, we have $PV|T|=PT=PQP=|T|^2$. Next,

$$(PV - |T|)(V^*P - |T|) = P(VV^*)P - PV|T| - |T|V^*P + |T|^2 = P(VV^*)P - |T|^2$$

Since the inequality $VV^* \leq Q$ implies $P(VV^*) P \leq PQP = |T|^2$, we have

$$(PV-\mid T\mid)\,(PV-\mid T\mid)^*\leq 0\;.$$

It follows that PV = |T|.

therefore

Let us define U by

$$U = (|T| - V) (I - |T|^2)^{-\frac{1}{2}}$$

U is a bounded operator and such that PU=0. Since $|T|V=|T|PV=|T|^2$ we get

$$(|T|-V)^*(|T|-V)=E-|T|^2=E(I-|T|^2)$$

and therefore $U^*U=E$. Hence, U is a partially isometric opeator, consequently, the product UU^* is also a projection. Because PU=0, it is $UU^* \le I-P$. The subspaces of H corresponding to E and UU^* are isomorphic, have thus the same dimension.

Let E_{λ} be the spectral function of A. We know that $A \ge 0$ and that the open interval (0,1) belongs to the resolvent set of A; hence $E_{\lambda}=0$ if $\lambda=0$ and $E_0=E_{1-0}$. It follows that $E_1=E_0+(E_1-E_{1-0})$ is the projection onto the null space of A^2-A . On the other hand, the equality

$$A^{2}-A=(I-PQP)^{-2}(PQP)=(I-|T|^{2})^{-2}|T|^{2}$$

implies that the operators A^2-A and |T| have the same null space. Since the null space N of T coincides with that of |T|, we conclude that E_1 is the

projection onto N. This implies $E=I-E_1$. Now, it follows from $E_0=I-P$, $U^*U=E$ and $UU^* \le I-P$, that dim $(I-E_1)=\dim E=\dim UU^* \le \dim E_0$. The conditions of theorem 3 are thus necessary.

b) Conversely, let us suppose that a self adjoint operator A satisfies these conditions. First, we infer from $A^3-A^2\geq 0$ that $E_{\lambda}=0$ for $\lambda<0$ and $E_0=E_{1-0}$, where E_{λ} is the spectral function of A. If we put $P=I-E_0$, we

have PA = AP = A and from $A - P = \int_{1-0}^{\infty} (\lambda - 1) dE_{\lambda}$ we conclude that $A - P \ge 0$.

Thus $(A-P)^{\frac{1}{2}}$ exists. Moreover, because dim $(I-E_1) \le$ dim E_0 , there is a partially isometric operator U such that $U^*U=I-E_1$ and $UU^* \le I-P=E_0$. Hence PU=0. Let $\varphi(\lambda)$ be any function of the real variable λ , measurable for $\lambda \ge 0$ and such that $|\varphi(\lambda)|=1$. Define the operator F as follows

$$F = P - \varphi(A)(A - P)^{\frac{1}{2}}U^*.$$

 $\varphi(A)$ is a unitary operator which commutes with P. Since PU = U * P = 0 and $(A-P)^{\frac{1}{2}} = P(A-P)^{\frac{1}{2}}$, we have $F^2 = F$, so that F is idempotent. On the other hand,

$$F^* = P - U(A - P)^{\frac{1}{2}} \overline{\varphi}(A)$$

An easy computation gives $FF^* = A$. Thus, we have found an idempotent operator F satisfying (17). The conditions of theorem 3 are therefore also sufficient.