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1. Membership relation, 1.0. The relation € meaning “fo be an element
of” was introduced as late as at the end of the 19% century (G. Peano)

1.1. The relation & is not characteristic for sets.

1.1.1. One could call granular structure G any thing consisting of mem-
bers i.e. satisfying the identity

G={x; xE€G}.

The solution x of x € G may be of a very various character and complexity.

1.1.2. There are sets S such that x €S has no solution x; such a set
is the empty set @; one convenes that @ is unique; but one might consider
a theory of sets in which there are many void sets.

1.1.3. There are non-sets X consisting of all the x satisfying x € X
such a thing are e.g.: the class O of all ordinal numbers, the class KO of all
cardinal-ordinal numbers i.e. of all ordinals < w and of all ordinal numbers
of the form w, («€ 0), the class K of all the cardinal numbers, the class of
all sets, the hypertree (P, —|) consisting of all the sequences

Se 8y S1s ey Sty oo, (<a, a€0)
such that s, is an ordinal number satisfying
St < O[] 5 Ofa’]

denotes the first ordinal number such that the cardinal numbers which
are < ko form a well ordered set of type «'; for sequences s, ¢ one deno-
tes s—|t, provided s be an initial section of ¢; if s=—|¢ and s#¢ one wri-
tes a - b. The hypertree (P, —|) is connected to permutations of sets and of
numbers.

1.2. For sets the binary e-relation is antireflexive, antisymmetric and
antitransitive. In this sense the relation ¢ is complete negation of equivalence
relations (which are: reflexive, symmetric and transitive). Consequently, the
theory of sets being based on the theory of e-relation, is in a par.icular con-
nexion to the theory of equivalence relations in the frame of the theory of
sets itself.

1.3. The property of being a member (element), or class is of a relative
character.
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1.4. It is interesting that for any thing 4 — no matter whether » is a
set or a non set — one might let correspond the set {b} consisting of b
as the unique member (cf. § 7.3).

1.5. Repetition sets or spectra.

1.5.1. For any set S and any member s of S one does not allow the
relation s €S\ {s}. Therefore e.g. {2,3,3,3,4,4}\{3}={2,4}.

1.5.2. On the other hand, there are structures in which it is relevant
whether a member occurs once, twice or several times. E.g. for an algebraic
polynomial a(x)=ay+a,x+a,x*+ - - - +a,x", a,#0, one considers not only
the set o, of zeros of a but also the unordered sequence

Sa:a(l), Ay, -+ - » Ay
of all the zeros of a(x), each with the corresponding frequency and such that

a(x)=(x—aq)(x—aw)- - - (x—am) an,
where n is the degree of a(x).

1.5.3. The whole theory of “‘sets with repetition” or of R-sets could be
built; where R-set or spectrum is any ordered pair (S, f) of a set S and a
mapping f:S— K such that for every x&S the symbol fx denotes a cardinal
number >> 0 indicating the frequency of x in S. In such R-sers the relation
x &SN {x} is well allowed.

2. On the i-operators. 2.1. For every object b let {6} or ib denote the
set consisting of b as its unique term (cf. 1.4). 2.2, The opposite operator:
the anti i-operator or — i-operator, associates to every set S all the members
of S; thus —i{b}=b, —i{l,2}~1,2 etc. The anti — i — operator is a multi-
valued function defined on every system of sets, granular structures etc.

2.2. The i-operator by iteration yields the i*-operator:

i?=ii ie. *b=1iib.
For any object b one could set
b= b, itb=ib={b}, i*TV b i(*b), Mb= . -ii---iib

for every limit ordinal x.
2.2.1. Example. We have the entities:

Loil= A1}, i {1, et L= {1 -

The first term 1 is not a set; the last one neither. While 1 has no *‘elements”
and no structure — 1 is an atom — the entity ¢=/®"1 has a structure; in
particular ¢ is a kind of infinitely complex unity.

2.3. Obviously, the objects b; {b}=ib, i?b-{{b}} are mutually related.
We shall say that b is in e?-relation to i2b and write b&2i2b. More generally,
we shall write b€2S, provided i< S; and for any ordinal number « we shall
write bE®S, provided i@-D*HES or i€ S, according as « is of the first or
of the second kind. We get in this way the e-relations:

¢ meaning =—, el=¢g, €%, ..., &%, ...
for every ordinal number «.

2.4, Sub-element relation. The ““logical sum” of these relations might be
called the sub-element relation and denoted by E; xEy is read: x is a sub-
element of y; in particular case that £ means €, x is an element of y. It is
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to be observed that a set $ can contain a thing x as its element or subele-
ment of various degrees, as it is shown by considering the set

{Lil, 21,81, ...}
2.5. For sets S the objects
S=5,iS, 28, ..., ™S, ... {for any ordinal «)

are pairwise different. For non-sets S, it is conceivable that the foregoing
objects are not all pairwise different.

2.6. It is interesting to observe that there are sets S such that if x&2S
then x€.S; such are the sets

S={0,i0,20},

(9,iw,i%0, ...},
where @ is the empty set.

2.7. For every object & we have the hypersequence
Ph=5b, i*h, ... i*"h, ...

of sets i**b for a— <« and of non sets {**b for a~ = «; as to i®*b=5, b might be
a set as well as a non set.

3. Granular structures and non granular structures.

3.1. In every granular struciure G the elements of G are differentiated;
there are granular structures which are nonsets. Such structure is every class
which 1s “too extensive” to be a set, e.g. the class of all ordinal numbers
or the class of all sets.

3.2. A new kind of non-set structure is obtained by considering things
with non differentiated elements, the “‘elements” having no individuality (in
atomic physics, in biology and in the theory of big molecules one is dealing
with such non-differentiated non granular structures).

3.3. Another kind of non-set structures is obtained, when the ‘““evolu-
tion” of S is too much put forward in such a way that the constituents of
S need not be elements of S. Such one is the structure i®* 1—=---{{{1}}}---:
too many shells are present and we are not able to reach from outside any
constituent. In this example there is a unique constituent; it is ready to form
more complicated structures with many constituents, tied and quite nonsepa-
rable mutually.

3.4, The notion of structure — granular or non granular — is very gene-
ral and multivalent. The study of various structures is the very object of many
human activitities, Every science is a structure. Every machine is a structure.
Language is a structure. Mental structures are of vital importance; mathe-
matical structures are reflecting some special observed structures. The
classification of various structures, the interconnections between them are
very important topics. It is very important to examine the transitions and
mutations of a structure moving from a domain in another domain. As example
let us mention the following structures: relation, group, system, family, ope-
ration etc. which generated in biology but are transplanted in other fields,
particularly into mathematics.

4, Vacuous or void set. All-sets.
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4.1. We assume the existence of a set without elements or proper parts
and being part of every set; it is called the vacuous or empty set and denoted
by O or v or A or ©@. Consequently, v is a set but the relation x €v does
not hold. We assume that v is unique. The relation vC S for every S is really
a definition of v.

The consequence of the convention v C S is v € PS for every set S (as
usually, PS denotes the set of all the parts of S).

The set {v} is not empty: {v} consists of v as its single element.

The philosophical aspect of the distinction of v from {v} is evident. The
mathematical implications of this distinction are very far-reaching. Is it really
non-contradictory to form {v} and to distinguish {v} and v?

v consists of nothing on the one hand, and on the other hand v is a
part of every set S and even an effective element of every P-ser PS. Hence,
S being any set the vacuous set v is an element and a part of PS i.e. v
€ PSNPPS.

The void set is connected to a number — with 0L

The notion of void set is a useful convention and presents a magistral
dialectical wunification of two different items: void and non void. Tt is to be
observed that void sets were introduced as late as the beginning of this cen-
tury. There is a unique void set, although by provenience one could classify
the void sets in very various ways. The properties, conventions, terminology
concerning vacuous set might be very various and in mutual contradiction.
For instance, the set (space) v is considered as dense, non dense, nowhere
dense, finite, etc.

The considerations about the number 0 form a chapter of the theory
of void sets; dynamic theory of 0 is the very basis of infinitesimal processes.

4.2. The logical counterpart of void set — the ‘‘all-set” is not concei-
vable as a ser because such an idea would lead to contradictions. The non-
vacuous sets are either finite or transfinite. The theory of transfinite sets is
of great philosophical importance, and closely tied to logical quantors and
hierarchy types. The theory of void set(s) on the one hand and that one of
transfinite sets on the other hand are two aspects of human mathematical
and philosophical activity.

4.3. The void set and -atoms. The void set v is to be distinguished from
general “atoms”. Atoms have no elements; e.g. such are the points in the sense of
Euclid. Various points are elements of sets. Since the points are distinguishable,
we are able to adjoin every individual point p to every set S — the result
is again a set, the set {p}US; in general, this set differs from S; what is to
be compared with the identity Suv=.S for every set S.

5. On the operator xU{x}=ux for every thing x.

5.1. Definition: ub is obtained by adjoining to b the thing b as an
element i.e. ub consists of the elements of & and of b as a member:

(€))] xEubox=b\Vx<h.

5.2. Value of ub for any set b. If b is a set, then ub is a set containing
as well b as an element as well as all the elements of b; since &b (b being

1 The role of the number 0 is tremendous. How the role of 0 might be of a rela-
tive character, let us remember that 0 assumes the role of neutral element in a group.

If we are dealing with single-valued fonctions f on a set S, we could realize f as
changing every x of § into fx; by idealization, we consider the identity mapping too as a
“changing”, although there is no changing at all. Similarly, the resting is called a moving
with the speed 0.



Some reflexions on sets and non-sets 105

a set), we see that both wb>b and ub>b and more precisely ub\ {b}=>0b.
In particular, ub#b and moreover, bs=ubs {b} for every non void set b.
One has wy=vyU{v}={v}.
5,3. Ub for any non set b, Let us consider the case when b. is not a set.
5.3.1. Case: b has no element(s): the relation x € b is not possible.
In this case ub={b}. In fact, since the relation x & b has no solution x, then
xEub=> x=5b and consequently ub={b}.

5.3.2. Case: b is a non-set containing at least one element: x< b is
possible for some x (this case occurse.g. if & contains very many elements—b
is a class, a superset). In this case again, ub contains as elements all the elements
of b as well as b itself. Only, in this case the relation b & b is not excluded.
If bS b, then ub=>b and b & ub. If & b, then ub> b and ub\ b= b; conse-
quently, ubs£b, {b}. In particular, for every non void set b we have b& b
and therefore ub+b, {b}, as stated already in § 5.2.

5.4. Theorem. The system
(O ub={b}, bnon& b

is characteristic for atoms or points i.e. for things containing no element; in
particular, for the vacuous set @ one has u®—{@} (the vacuous set is consider-
ed also as an atom). In other words, if (1) holds, then b is an atom; and
conversely, if # is an atom then (1) holds. .

First, if 5 is an atom, then (1) holds, as was shown in 5.3.1. Let us
prove the converse: (1) implies that b is an atom. In virtue of 5.2. b is not
a non vacuous set; consequently, b is either vacuous set © or b is a non-set;
in the last case, there is no x satisfying x € b i.e. b is an atom. Suppose on
the contrary that the relation x € b be possible. Since » non € b, then b and
x would be two different elements of ub, in contradiction to the hypothesis (1)
stating that uwb is a single-pointset {b}.

The theorem 5.4. may be expressed in the following form.

5.5. Theorem. The relation x € b holds for at least one x if and only
if ub#{b} or b<b.

Let us prove this theorem directly.

1. First, if x € b is possible, & is cither a non empty set or a superset;
if b is a non vacuous set, then bz ubz {b}; if b is a superset, then ub also
is a superset and might not be equal to the set {b} consisting of the single
member b. Consequently, x € b=>ub# {b}.

2. Conversely, let us prove that ub#{b}=>x < b for some x. We have
to distinguish two cases.

The implication being obvious for the case b < b, let us suppose that
bnon€b.

First case: b is a set; since u®={@}, one has necessarily b @ and
hence x & b for some x.

Second case: b is a non set; b is not an atom because every atom

satisfies ub={b}. Consequently, » is a superset and consequently, one ha
xE b for some x.

5.6. Theorem. If
(1) bu{b}=0>b, then bEb; and conversely,
(2) b<b implies (1); consequently (3) bU {b}=b>b<b.

First, by definition 6Eub i.e. bEbU{b} and hence by (1) one has bEb.
This means that (2) < (1).
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Secondly, if b€b, then {b} Th and bU{b}=b; in other words (2) = (1).
6. Operator u, for any ordinal «.

6.1. Definition. Let o be any ordinal s 0; for every thing b we
set u,b=1%h~b
uyh = UL} = %6 Uih
ugb bu{b}u{ ,}—-:z“buﬂbuﬂb

u,b g 1*’!) (o' <ac) for every ordinal « > 0.
One could say that
=i (o' << a).
a!
In the foregoing sections we considered the operator u,; the index «
in u, indicates the order type of summands in the definition of wu,.

6.2. Of course, it is a particular problem to study the foregoing func-
tions u, as well as other ones connected to i*"-operators.

6.2.1. 1t should be particularly interesting to study the function i%Ui? i.e.
to form bU{{b}} for any object b.

6.3. Theorem. bEb>u,b=>b as well as i*b&b for any positive
ordinal -7 o

As a matter of fact, we have the following chain of implications:

from here, by iteration one gets i*b€ b, 3b€:b,
Therefore we have the following

Ush = Uugh Uty = bU{b} = b
u3b bU{b}U{{b}} b

unb -b and
Uob=bUibUi2bU. . . =b.

7. The foregoing considerations show a particular and very important
role of the re'ation

(1) beEb
and of the mapping
{(2) b—{b}.

The simplest standpoint is the following one:
7.1. No set satisfies b < b;
1.2. No non-set satisfies b—{b}.

7.3. It is a special task to consider axiomatically also such theoneq of
sets in which one of the propositions 7.1, 7.2 or both are not accepted.
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