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TORSIONAL SYSTEM WITH SPECIAL STATIC CONSTRAINTS!
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1. Background. — Small vibrations of a torsional system, doubly coupled
statically, considering also the influence of external and internal friction, are
analysed. The system considered consists of a set flywhzels attached to a
light shaft with a spring and a dashpot batween each flywheel and the ground
(Fig. 1). It is assumed that the damping force of external and internal fric-
tion is proportional to the first power of the velocity. The kinetic and

potential energies and the dissipation function of a system which performs
small vibrations are homogeneous quadratic forms in the gencralized angular
velocities (g=0) and generalized coordinates (g =0) respectively, with constant
coefficients, {1], namely

(1 2E,=(0) 4{8}, 2E,=() (C+C) {6}, 20=(0) (B+U){6}.

Here A (a3), a;=Jy, ag=0 for i# k, represents the diagonal inertia matrix;
C (), with ¢i=c1+¢;, € im1=—Cimy, G it1=—C;, cg=0 for |i—k|>1
the torsional shaft rigidity matrix which has Jacobi’s form with three diagonal
rows, [2]. Further C' (c), cii=¢i, ¢y =0 is the diagonal stiffness matrix of
the spring stiffness reduced to the equivalent torsional rigidity; B(b; =b;, by =0)

1 Submitted at the Sixth Yugoslav Congress for Rational and Applied Mechanics in Split
on June 5. 1962. and at Mathematical Institute in Belgrade, on December 20. 1962.



28 Danilo P. Ragkovié¢

is the diagonal dissipative matrix of external friction and U (u;) the dissipa-
tive matrix of internal friction which has the same form as the matrix C

changing only the letter ¢ in the letter u; {6}, {6} are the column matrices
and (0), (6) the row matrices, [3].

By Lagrange’s equations, the system of differential equations of mortion
may be wriiten in the matrix form

@ A {0} +(B+U) {0} +(C+C) {0}={0}

where Q is the generalized force, the force or the moment. In this case of
torsional vibrations it is the torsional moment, which is M =0 or M#O
whot corresponds to free or to forced vibrations.

2. Free vibrations of a homogeneous system. — In the case of a homo-
geneous system, in which case the coefficients of the matrices are

Je=J; ck=c¢; o' =ci by=b: w=u; coFc; c,Fc
using the ratios
p=cll; q=c'|J; b[J=2r; ulJ=20; co/c=Vy; CalC=Vn; Upfth=hg, tp[ti =it

or
A=JI; B=bl;, C'=c'I, C=clJ;; U=ud,,

the above system of differential equations (2) becomes
3) Ty +2(rT+pJy) (B} + (@ +pJy) {8} ={M/J}; or {0};

where I is the unit matrix and J; and J, the special Jacobi’s matrices

vo+1 —1 0. uetl —1 0.
1 210 —1 2 -1
4) Ji=| 0-1 2- 3 Je= 0—1 2
........ iy SR
S RV 1 pat1

To solve the system of differential equations (3) we assume that is
{0} ={r} (exp Arr) where {r} is the complex amplitude vector and A= —3+i o,
i=})/—1, the eigenvalue. The problem is then reduced to one of characteristic
values, [4], and the corresponding characteristic equation is

) S M =[0*+2rr+q) I+ Q2p JA+pJy|=0.

Jacobi’s matrices J; and J, depend on the boundary conditions, namely
on the coefficients vy, v,, 1y, ¢,. Further the three characteristic cases of the
boundary conditions are treated.

a) Shaft with built -in ends. — In this case (Fig. 2a) the coefficients are
Co=Ca=C; Y9=V,=1, yy=u,=1. The both Jacobi’s matrices are equal with
the form

| 2 -1 0.
-1 2 -1
(6) Ji=Jy=J= 0o -1 2
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and the corresponding characteristic polynomial is

%) f@=|z1+7]=3 azm—=0
v=0
with the eigenvalue
(8) y— A4+2rh+gq ]
2pA+p
J Q) J J
1 ] ﬂ___U ¢ [le (< _D
T U i U
J
o L <l H H
U u
Fig. 2.

From Eq. (6) it follows that the characteristic equations can be found
by the use of formulae of regression obtained by simple expansion of the
determinants

©) fa(@D=(E+2) forr(@D—fu-2(0)=0; fo=1.

The coefficients a4, of the characteristic polynomial f(z) =0 are a,=S,, where
S, is the scalar of the v-th order of the Jacobi’s matrix. They can be calcu-
lated immediately or by means of the connected relation as follows

(10) =8, = i(z” ' s), a” =al" "4 2407 — a2,
and are
ay=1, a;=2n; ay=n(2n—3)+1; ...; a,=|J|=n+1.

These coefficients are given in the Table 1. They form a series of numbers
whose differences are determined Av=2v, A¥+1=0; v is the order of the diffe-
rence, [5].

TABLE I
n 'aO‘ a, ’ a, | a ‘ a, | as ’ ag 1 a, | ag | a, ‘ ayo
11| 2
2(1] 4 3
301 6| 10 4
41| 8] 21| 20 5
50110 | 36 | 56| 35 6
61| 12| 55| 120 | 126 | 56 7
701 14| 78| 220 | 330 | 252 84 8
8/1] 16 | 105 | 364 | 715, 792 | 462 | 120 9
91| 18 | 136 | 560 | 1365 | 2002 | 1716 | 792 | 165 | 10
10 | 1| 20 | 171 | 816 | 2380 | 4368 | 4290 | 3432 | 1287 | 220 | 11
Avlo| 2| 4 | 8 | 16 | 32 | 64 | 128 | [ |
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If z; is the root of the characteristic equation (7) it follows that the
eigenvalue (8) is

(11) NR+2 (r—pz) A+ (q—pz)=0; A=—3Fiw;
Sd=r—pzy; o¥=(q—pz)—(r—pz)

b) Shaft with one end built -in, other end free. — In this case (Fig. 2 b)
the coefficients are

Co=0C; =05 vo=1; v, =0; po=1; p,=0; J, =J,,
and from Eq. (7) and Eq. (9) it follows that the formula of regression is
(12) SPE=E+ )[R @22 =0

where £ (z2) =f% represents the characteristic equation for the first case
of the boundary conditions (Fig. 2a) of a system with »n disks.

c) Shaft with free ends. — In this case (Fig. 2¢) the coefficients are
co=0C,=0; v-v,,—O fo=tn=0

and it follows that the reccurence formula is
D=t S e =D [+ D) SR Do)
~le+ 1) £ 2=+ ) U2 —f2a = [ 2= 5251 -
=/ = 2f 2+ f2a=2f =0, 20

or
(13) fP@=r2 @-o.

Hence we can conclude that the first case is the basic one because of the
possibility of becoming the characteristic equations for two other cases by
means of their characteristic equations.

3. Application of trigonometric method. — The homogencous system
consists of many identical elements, hence the method of linear difference
equations can be used, [6]. Let us consider a homogencous system with
boundary conditions governed by means of differential equation (3), then the
problem is reduced to the system of » homogeneous linear equations with
constant coefficients

(14) (O2+2r2+q) I+ 201 T+ pJy) {r}={0}
or
fo Al—‘fA =0
(15) —Ak 1+(z+2) Ak—Ak+1 . =0
“‘fAn—l'i‘fn
where

Jo=R+2ra+q+2p0 (L4 pd A+p (L4v); f=2pr+p;

(16) ,
Fa=2242r04g+2p (L+u) h4p (14,
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Introducing an auxiliary complex angle

(17) 242-2c0s0; 2= —2+2cos p— —d4sinz ® = M r2rhia
2 2ph+p

the difference equation for a purely homogeneous system is

(18) Aj_1—2cos ¢ A+ Ap11=0

with corresponding solution

19 Ar=Acosko-+Bsinkg

where 4 and B are the constants which must satisfy the boundary conditions

foAi—f Ay=0; A;j—Acos¢+Bsing; Ay,=Acos2¢-+ Bsin2p;

(20) —f Ay 1+ A,=0; A, =Acos(mn—1)¢+ Bsin(n—1)¢;

A,=Acosng+ Bsinne.

These two linear homogeneous equations have the solutions for 4 and B
different from zero if their determinant is equal to zero

Jocos o—fcos2¢ fosinoe—fsin2¢
Ae)= : : =0.
—fcos(n—1)otf,cosne —fsin(n—1)¢+f,sinng
This determinant represents the characteristic equation
@D A@) =—fofusin(n—1) o +f (fo+/2) sin (n—2) p—f 2 sin (1—3) ¢ = 0.

For three characteristic cases of boundary conditions (Fig. 2) the results
are given in the Table 2.

TABLE 2
r Case A(p)=0 i Qs | s
1

‘Fig. 2a sin(n+1)o smi(n+ 1) 1,2,...,n ’
| Fig. 26 | sin(i—Do—sing | @s—D)n/@n+1) [L,2,...,n ’

i Fig. 2¢ sinng sw/n 1,2,...,n~11

The roots of these trigonometric equations can be determined graphi-
cally, [7].

From Eq. (17) it follows that the eigenvalue 2, is

22) 2242 (r—4p sin2%> 7\s+<q—4p sinz%):o; A — S
or
23) b —r—dpsintd: ol =(q—4p sin2%>—(r+4p sinzi;ﬁ)z

hence the corresponding amplitude is

(24) AP = A cos k o, + BO sin k o,.
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4. Forced vibrations. — We now take the problem of forced vibrations
with damping assuming that the first disk only is subjected to a periodic
impressed torsional moment M, =M;, (exp i Q7), with the amplitude M,, and
angular frequency Q, and that the others are not pertubated. Supposing the
stationary state of motion it is convenient to try a solution of the form
{6} ={C} (exp iQ1) where {C} is the complex amplitude vector of the forced
vibrations. The corresponding generalized force is the moment Q = 9,, hence
Eq. (3) for a homogeneous system becomes

(25) I{0)+2 (r T+o J) {0} +(q I+p J) {6} = (M)}

and the set of algebraic linear nonhomogeneous equations is

(26) (z+1+a) C,—C, =Myo/J (p+2pi)=h
—Cra1+(2+2) Co—Ciyy =0

—Chy+(+1+0) C,=0
where the abbreviations are

a=Zpino+pg0’ b=2"iQV"+”“”; iz‘/:—_l—.
20iQ+p 20iQ+p
The determinant of this system of homogeneous linear equations can be

determined by making use of the method of finite differences, namely by
introducing an auxiliary complex angle

Q7 z4+2=2cos¢, z+1=—1+2cos ¢
supposing the solution in the form
(28) Ce=Acoskd+Bsinky

where 4 and B are unknown complex amplitudes. Substituting Eq. (28) into
Eq. (26) it follows

(fo cos y—cos 2¢) A+ (f, sin y—sin 2¢) B =h
[—cos (m—1)y+f,cosnd] A+[—sin (n—1)$+f,sinn¢] B=0

(29)
with
Jo=a—1+2cosy, f,=b—1+2cos=f,—a+b,

and the determinant of this system is

GO AW =Sy fusin (1—1) b—(fy +£,) sin (1—2) §+sin (1—3) &
By means of Cramer’s rule the constants 4 and B and amplitude C,
are determined as follows
(€2)) A=h{[fysin nd—sin (n—1) $)/A; B=—h[f, cos ny—cos (n—1) {J/A,
Ce=h[fn sin (n—k) y—sin (n—1—k) {].
The results for three characteristic cases of boundary conditions are given

in Table 3.

Let us now consider the forced vibrations of a homogeneous system
with initial conditions, supposing that in the initial moment (¢ = 0) the system
is at rest (8=0, 6,=0) and that suddenly perturbing moment depending on
time (¢) is applied to the last disk of the homogeneous system shown in
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Fig. 2a. In this case the system of governed differential equations is such as
in Eq. (3) only with the right side A, () =M,/J, M,=M, .

TABLE 3
Case | fo | | A () ( A ; B
Fig. 24| 2cosy | 2cos¢ sin(r+ 1) ¢ A | —hagme )Y
Fig. 2bl 2cos ¢ !2cosap~—1 2cos 2”“4). sini2 h i htg2"+1¢
| | 2 2 2
Fig. 2 ¢|2cosy—1 2cosz,‘)-~~li~25inn\b (1—cos §)| [sin (+1)y—sin ny] | - hicos (n+1)y—cos 1
| A A

Making use of the Laplace transform =, () for the angular amplitude
0, () and for perturbing moment [§]

(32) e (M) =L (8;) = f e~ MO dt; F,(W=L(hy)
0

by means of the operational rules for derivatives

f oM D dt = —8 (0) + nr = s fe'““ 6 dt = —[10 (0) + 6 (0)] + 22 =22y
0 0
one cbtains the following system of linear equations

(33) (O2+2ra+q) I+ Q2ex+p) J) {0} ={F.}; Si=Jy=J
or

(z+2) m—mng =0
(34) — g1+ (24 2) e—Ngeyq =0

— Mg+ (2 +2) Ny =,/ 2o+ p).

Introducing the relaticn (17) supposing the solution in form (19) taking
into consideration the first and the last equation of the above mentioned
system (34) it fcllows

A (2 cos o—cos 2¢)+ B (sin 2 9—sin 2¢) =0,
A[2cos¢cosng—cos (n—1) o]+ B[2cos o sinnp—sin{n—1)o=F,/(2p%+p)
and the constants are

A=0; = Fn .
Qeh+p)sin(n+1)o
Hence the corresponding Laplace transform is
(35) =B sin ko—-—tr_ . __Snke _pM®

2oh4p  sin(u+De  TNQ
where M and N are the polynomials of & or of z because it is cos ¢=1+
-+(z/2). They have the forms

M=Q2pr+p)~* sinko=Q2pr+p) 3 (— Iyt (2vk 1) sin?v~1 o cosk+1-2 g,
< -

n+1

N=sin (n+1) =3 (—1)*! (2 1) sin®~1! ¢ costti-2 o,
1

3 Publications de PInstitat Mathématique
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The degree of the polynomial M (2) is lower than the degree of the polyno-
mial ¥ (2). The polynomial N (%) has all roots distinct ¢,=s=/(r+ 1), hence
the expansion method of operational calculus can be used. The quotient of
polynomials M and N can be expr asessed an expansion in partial fractions

(36) M . g MO, N = dN _dN de
Z’“ As B N()’ dn de  d\

and the coefficients are

sin ko sing . 2eh+p © et
LR

(37) B,= — >
(n+cos(n+ o pAZ+pA+rp—pg

hence the Laplace transform is

- F, ‘
= B, = B, L, L,.
(38) Tk Z — ‘? 1 Loy

By using Heaviside's expansion theorem and the theorem of the con-
volution, [9], we can write the amplitude 6, (f) corresponding to the Laplace
transform v, (A) in the following form

(39) ak(t):~§ g 2eh L few T)%Q"(T)d
G (1) cos (n4+ 1) @ eA2+phg+rp—pg

Thus in the same way we can also obtain the amplitudes for two other
cases of boundary conditions (Fig. 25, ¢)
Fy sin ko . 21

T . > Ps T
20k+p sin(n+1l)o—sinneg 2n+1

(Fig. 2b) =

(40) .
(Fig 2¢) R | B L L3 F Y L
20A+p sinne n
with
b) fy_v: —{(n+1) cos(n+1)p—ncosky] (A +ph+rp—pq)
dr sin ¢ Qph+py
o dN _—ncosng  (pAi+phtrp—oq)

ar sin ¢ (2ph+p)
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