A THEOREM ON SEMIGROUPS OF LINEAR OPERATORS

Dragomir Ž. Djoković

(Communicated September 12, 1963)

Let G_+ be a semigroup of rational numbers r of the form $l/2^k$, l, $k=0,1,2,\ldots$ with addition as a binary operation. Let R be n-dimensional vector space over the field of complex numbers and let $r \to \Phi(r)$ be a representation of G_+ in the semigroup of all linear transformation of R with multiplication as a binary operation. We have

(1)
$$\Phi(r) \Phi(r') = \Phi(r+r') \qquad (r, r' \in G_+).$$

We shall say that $\{\Phi(r)\}$ is a regular representation of G_+ if $\Phi(r)$ is regular for every $r \in G_+$. We shall denote by $\overline{\Phi}(r)$ the matrix of $\Phi(r)$ in a fixed basis of R.

S. Kurepa [1] has proved that if $\{\Phi(r)\}$ is a regular representation of G_+ then in a suitable basis of R we have

(2)
$$\Phi(r) = U(r) \exp(r C) = \exp(r C) U(r)$$

where $\overline{U}(r)$ is a semigroup of diagonal unitary matrices and \overline{C} is the sum of a nilpotent and a real diagonal matrix.

We shall obtain Kurepa's result in a simpler and quite different way. By [A, B] we denote the commutator of A and B. We have

Theorem 1. If $\{\Phi(r)\}$ is a regular representation of G_+ then in suitable basis $\Phi(r) = U(r) \exp(rC)$ where [C, U(r)] = 0 for every $r \in G_+$ and $\overline{U}(r)$ is a semigroup of diagonal unitary matrices.

Proof. Since $\Phi(r)$ is regular we can write $\Phi(r) = \exp \Psi(r)$ where $\Psi(r)$ is a polynomial in $\Phi(r)$, (see [2]). From (1) we find that $[\Phi(r), \Phi(r')] = 0$ so that also $[\Psi(r), \Psi(r')] = 0$. Hence,

$$\exp \left[\Psi \left(r\right) + \Psi \left(r'\right)\right] = \exp \Psi \left(r + r'\right),$$

(3)
$$\Psi(r) + \Psi(r') = \Psi(r+r') + 2 \pi i D(r, r'),$$

where, in suitable basis, $\overline{D}(r, r')$ is a diagonal matrix with real integral elements. If $\psi_{ij}(r)$ is the element in the *i*-th row and *j*-th column of $\overline{\Psi}(r)$ we find from (3) that

(4)
$$\psi_{ij}(r) + \psi_{ij}(r') = \psi_{ij}(r+r') \qquad (i \neq j).$$

The general solution of this equation is given by $\psi_{ij}(r) = r \alpha_{ij}$ where α_{ij} is a complex constant. The real part of $\psi_{ii}(r)$ also satisfies the functional equation (4) and $Re \ \psi_{ii}(r) = r \alpha_{ii}$. Hence, we have

(5)
$$\Psi(r) = r A + i \Psi_1(r)$$

where $\overline{A} = ||\alpha_{ij}||$ and $\overline{\Psi}_1(r)$ is a real diagonal matrix such that

(6)
$$\Psi_1(r) + \Psi_1(r') = \Psi_1(r+r') + 2\pi D(r, r').$$

From $[\Psi(r), \Psi(r')] = 0$ and (5) we get $[A, r' \Psi_1(r) - r \Psi_1(r')] = 0$. Putting r' = 1 we find $[A, \Psi_1(r) - r \Psi_1(1)] = 0 \Rightarrow [A + i \Psi_1(1), \Psi_1(r) - r \Psi_1(1)] = 0$.

Finally, we have

$$\Phi(r) = \exp \Psi(r) = \exp \{r[A+i\Psi_1(1)]+i[\Psi_1(r)-r\Psi_1(1)]\}$$

$$= \exp i[\Psi_1(r)-r\Psi_1(1)] \exp r[A+i\Psi_1(1)]$$

$$= U(r) \exp (rC)$$

where $U(r) = \exp i[\Psi_1(r) - r\Psi_1(1)]$, $C = A + i\Psi_1(1)$. Using (6) we can check that $\overline{U}(r)$ is a semigroup of diagonal unitary matrices. Since U(r) is a polynomial in $\Psi_1(r) - r\Psi_1(1)$ it commutes with C.

Thus theorem 1 is completely proved.

Corollary 1. Under the conditions of theorem 1 there is a basis in R such that in this basis we have

(7)
$$\overline{\overline{\Phi}}(r) = \overline{\overline{V}}(r) \exp(r\overline{\overline{J}}), \quad [\overline{\overline{V}}(r), \overline{\overline{J}}] = 0$$

where $\{\overline{\overline{V}}(r)\}$ is a semigroup of diagonal unitary matrices and $\overline{\overline{J}}$ is a Jordan (i.e. classical canonical) matrix with real eigenvalues.

Proof. Since $\overline{U}(r)$ is diagonal and commutes with \overline{C} for every $r \in G_+$ we conclude that if some entry c_{ij} of \overline{C} is non-zero then in every $\overline{U}(r)$ i-th and j-th diagonal elements are equal (see [2]). Consequently, we can find a permutation matrix \overline{P} such that

$$\overline{P}^{-1}\overline{C}\overline{P} = \overline{M}_1 + \overline{M}_2 + \cdots + \overline{M}_k = \overline{M}$$

$$\overline{P}^{-1}\overline{U}(r)\overline{P} = \overline{N_1}(r) + \overline{N_2}(r) + \cdots + \overline{N_k}(r) = \overline{N}(r) \qquad (r \in G_+)$$

where $\overline{N}_i(r)$ is scalar unitary matrix of order n_i and \overline{M}_i is of the same order. We have $\overline{P}^{-1}\overline{\Phi}(r)\overline{P}=\overline{N}(r)$ exp $(r\overline{M})$.

Let $\overline{T} = \overline{T_1} \dotplus \overline{T_2} \dotplus \cdots \dotplus \overline{T_k}$ be a quasidiagonal matrix of the same type as \overline{M} such that $\overline{K} = \overline{T^{-1}} \overline{M} \overline{T}$ is Jordan matrix. Then $\overline{T^{-1}} \overline{N}(r) \overline{T} = \overline{N}(r)$ since $\overline{N_i}(r)$ are scalar matrices, and $(\overline{P} \overline{T})^{-1} \overline{\Phi}(r) (\overline{P} \overline{T}) = \overline{N}(r)$ exp $(r \overline{K})$. Let $\overline{K} = \overline{K_1} \dotplus + i \overline{K_2}$ where $\overline{K_1}$ and $\overline{K_2}$ are real matrices. Since $[\overline{K_1}, \overline{K_2}] = 0$ we obtain $(\overline{P} \overline{T})^{-1} \overline{\Phi}(r) (\overline{P} \overline{T}) = \overline{N}(r)$ exp $(ir \overline{K_2})$ exp $(r \overline{K_1}) = \overline{V}(r)$ exp $(r \overline{J})$ with $\overline{V}(r) = \overline{N}(r)$ exp $(ir \overline{K_2})$ and $\overline{J} = \overline{K_1}$. In the new basis determined by the matrix $(\overline{P} \overline{T})$ we have (7).

Corollary 2. If $\{\Phi(r)\}$ is a regular representation of G_+ and $\Phi(r_0)=E$ (=identity operator) for some $r_0\neq 0$ ($r_0\in G_+$) then in a suitable basis $\{\overline{\Phi}(r)\}$ is a semigroup of diagonal unitary matrices.

Proof. Using corollary 1 we find that $\overline{V}(r_0) \exp(r_0 \overline{J}) = \overline{E} \Rightarrow \exp(r_0 \overline{J}) = \overline{V}(r_0)^{-1}$. But the last equality holds if and only if $\overline{J} = 0$ so that $\overline{\Phi}(r) = \overline{V}(r)$.

REFERENCES

^[1] S. Kurepa: Semigroups of linear transformations in n-dimensional vector space. Glasnik mat.-fiz. i astr., Zagreb, 1958, t. 13, p. 3—32.

^[2] Ф. Р. Гантмахер: Теория матриц. Moskva 1954, p. 198 and p. 183.