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1. Let Q=(xy, X3, ..., X,) be a point in the n-dimensional Euclidean
space and f(Q)=f(xy, X2, ..., X,) a real-valued, L-integrable function having
the period 2= in each variable. Let

M) SO~ 5 St e (i3 m)
— o ji=1

be its Fourier series where

dml...m,,=(27t)‘"jf ce ff(Q) exp(—iélmjxj)dxl...dx,,.

Let us denote
) A@= 5 dmmep (i3 m, %)
i hmpt=k i=1

and A4,(Q)=0 if k cannot be represented as a sum of n squares. Further
we denote the spherical partial sum of order k of the series (1) by

k
3) S(Q) =3 4,(Q).
r=0
The Riesz mean of the spherical partial sums (3) is defined by [4]

Sﬁ(Q) = Z {I1—(@m2+ - - - +mD) xR ap, ... m, exp(ij;mj xj)

mtte et mpt < x

k
= U= A4(Q), k<at<k
r=0

(4) =282 [(1—2x=P-1 1S (1) dt,
0

where S(x)=Sv(Q)=S,(Q).
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Let fp() be the spherical average of the function f(Q) over a sphere
whose radius is ¢ and whose centre is at the fixed point P, i.e.

) fp(@)=2"1rn—ri2 l"(71/2)ff(1”—+-51f) d o
F
where
PrEt=(x1+511, ..., x0+5,0),
F is the unit sphere B2 ... B2 1, and do; its (n—1) dimensional volume
element.

There is well-known Bochner’s formula [2] which expresses the Riesz

mean So(P), defined by (4), in terms of the spherical average f»(7) of f(Q)
at the point P. Namely, if 8>(n—1)/2, then

(6) SE(P)= ex® [ fp(0) Vauma (t) di,
0

with
¢=21+8=n2T (1 + 3) {T (n/2)} %,
and
Vu(@)=z7"Ju(2)
where J, (z) is the Bessel function of the first kind and of order p.

Further, we need the following asymptotic relation [4]: If >0 and
3>(n—1)/2, then

%) 3| [0 fp0) Vi oaa (1) | = 0 (x50 = 0(1), x> 20

7

uniformly in P.
We have to mention two well-known theorems [4] which connect the

asymptotic behaviour of the Riesz mean Si(P) as x— oo with the asymptotic
behaviour of the spherical average fp(f) as 1—0.

Theorem A. If fo(t)—s as t—0, for a fixed P or, more generally, if

t

lim = [ w1 fp (5)—s | d= =0,

—0 °
then for 3>m—1)/2
lim S3(P) =s.

x>

Theorem B. If at a fixed point P

Sfe(H)—s=0(@), 1>0, as +—0,
then for 8>x+(n—1)/2
S2(P)—s=0(x"¥, x—roo.

2. A function L(x) defined for x>0 belorgs to the class of slowly
oscillating functions at infinity if

a) L{x) is positive and continuous in 0‘<x<oo;

b) Iim Lax_y for every fixed ¢>0.

x->o0 J, (x)
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This definition is due to Karamata [S, 6]. He also proved that a slowly os-
cillating function can be represented by

(8) L(x)=c¢(x) exp{fxt—ls(t) dt},

where c(x) is a positive, continuous function which tends to a positive limit
as x—oo and e(x) is a continuous function which tends to zero as x-—oo.

From (8) many properties of slowly oscillating functions can be obtai-
ned. We shall mention the following {5, 6]:

(i) The asymptotic relation

lim £¢%) _ 4
X—>00 L(x)

holds uniformly on every closed interval a<t<b, (0<a<<b<oo).
(i) If Ly(x)~L(x), x— oo then also L,(x) is a slowly oscillating function.
(iiiy If A>0, then
x*L(x)—», x*L(x)—0, x-—oo.
(iv) If »>0 and
L(x)= x—g max {* L)}, L,(x)=x"*max {i=* L()},

SisKx x=1< oo

then L,(x)==L(x) and L,(x)=L(x), x—, and according to {ii) both L,(x)
and L,(x) are slowly oscillating functions; x*L,(x) is monotonely increasing,
and x—* L, (x) is monotonely decreasing.

(v) If g(¢) is such that both integials
1 o0
9 [t-<|g(®)|dt and ft“!g(t);dt
0 1

exist for some a¢>0, then [1]

(10) fwg(t) L(tx) dt=L(x) fg(t) dt, x—o.
0 0

3. The slowly oscillating functions appear naturally in problems con-
nected with asymptotic evaluations of certain integrals and sums. In [3]
Bojani¢ considered such a problem concerning the theory of multiple Fourier
series, and in the case of two-dimensional Euclidean space he proved a sli-
ghtly more general theorem of the type of theorems A and B, i.e.

Theorem C. Let 8>% and %—8<a<2. If at a fixed point P(x,, yo)

Sfr@=t==L(1)H), t—0
where L(x) is a slowly oscillating function at infinity, then

1 TA+)HTA—a/2)
11 sSSPy~ L9
( ) () 2% I(l+38+a/2)

x* L(x), x-—oo.
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Now we are going to formulate a theorem, analogous to theorem C, in
the n-dimensional Euclidean space, which connects the asymptotic behaviour
of the Riesz mean of the spherical partial sums of multiple Fourier series
of f(Q)=f (%1, Xz, ..., X,) at the point P with the asymptotic behaviour of
the spherical averrage fp(?).

Theorem 1. Let 8>(n—1)/2 and

(12) (n—1)2—3<a<n.
If at a fixed point P(x}, ..., x%)
(13) Sfe@O=t—2L{1/t, t—0

where L (x) is a slowly oscillating function at infinity, then

i T(+8 T {(n—a)/2}
2% T@/2) TA+8+a/2)

(14) S3(P)= 2 L(x), x—oo.

Proof. We give the proof of this theorem in a shorter form, for it is
similar to the proof of theorem C. The theorem C is a particular case of
theorem 1 when n=2. We make use of the Bochner’s formula (6) written

in the form
n

S2(P)=cxn [17=17% Vs upa (1) L(1/1) dt
[H]

+ cx"ft”“l Voini2 (tx) {fo@)—t=*L(1/0)} dt
4]

+ cx"f 11 fo () Viynp (0x) dt
n

(15) =L+ L+ 1

where, by assumption (13), n can be chosen so that

(16) |fpO)—t=* L(1/f) | <et~* L(1/t) for O<t<n.
Thus

[T, <ecx"ftn—1—a] Vsina ()| L(1/1) dt
0

<scx°‘ft°‘—1—"} Vson2 (1/t) | L(x1) dt
0
in virtue of (16). Since

[ Vsrnp (@) <M, for O<u<1
and

| Vorn W) | < Myu=3-04002 for y>1,

it follows by (12) that the function r*~1-» Vs, (1/) satisfies the conditions
(9). Therefore, according to (10)

ft““l"”] Vsina(1/t) | L(xt) dt=2 L(x) ﬁ“—l—"] Vssnp(1/6)|dt, x— o0,
0 0
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whence
(17 L=o{x*L(x)}, x—o0.

In virtue of (7) we have

M, M

| [ 3 L
l13‘<x8—(n—-1)/2 @S- D2 x* L(x).

Since by (12) «+8—(n—1)/2>0, we get by the property (iii) of slowly oscil-
lating functions

(18) I;=o0{x*L(x)}, x—oo.
Now we are going to evaluate the integral

Kl
I = cx"ft"“‘“"‘ V.2 (tx) L(1/8)dt
0

w 1/xu
= cx® (f—f)t"‘“‘_" Vainz (1/t) L(tx) dt
0 o0
(19) =Iy+ 1.

Since the function *~1-% Vs, . (1/f) satisfies the conditions (9), it follows
from (10)

L= ex® L(x)ft"—““ Vsinp(t)dt, x-o00.
0

In virtue of the formula [4]

[V, @ dr = 20271 T(@/2) (T (L tv—p/2)} 1, 0<p<v+3/2
0

we have by (12)

fzwwa Vipnsz (1) dt = 2=9=3=14n2 T {(n—a)/2} {T(1 + 5 + ¢/2)}~".
0

Therefore,
(20) IU%—{ I'd+3)T {(n—ax)/2} xL(x), x—o.
2* T(H/)T(+8+af2)
As
[ Veinn(1/0) | = O{P+@4D2) - 40
it follows

1/n
[ L t <M, x—3+n=D2 ft“+8“("+‘)/2 L(?)dt
0

M5 _ M5 o
<x6—(n-l)/2— A== x* L(x).

In virtue of (12), and by the property (iii) of slowly oscillating functions
@n ILo=0{x*L(x)}. x—o.

7 Publications de I'Institut Mathématique
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Now from (19), (20) and (21)
~ 1 TA+)HT {(n—d)/2)
2% T2 T 1 +8+w/2)

Therefore from (15), (17), (18) and (22) follows (14) and the theorem
1 is proved.

4. Using thcorem 1 we shall prove a theorem which connects the asym-
ptotic behaviour of the G§—mean of the spherical partial sums of multiple
Fourier series of f(Q)=f(x;, ..., x,) at the point P with the asymptotic beha-
viour of the spherical average fp(?).

The method of summation Gg[7] is defined by

Go(r;x)= Z{l—exp [(Av—x) x %} a,
A

< x

(22) L x* L(x), x—o.

O<r <M< - - <A< -+ =300, V-5300)

where
0<f8<1 and x>0,

or by
Gi (x) = [{1—exp [(—x) x~]} d{A ®)},
0

where A(f) is of bounded variation in every finite interval. Without loss of
generality we can suppose 4(0)=0 and in this case the expression (23) may
be written in the form

Gs (¥)= xx—efx{l —exp [(t—x) x~ 01} Lexp [(t—x) x~ 01 A(r) dt.
4]

The Gg—mean of the spherical partial sums (3) of the series (1) is
defined by .

G5 (S; x) = 2, {1—exp [(\—x) x~°1}* 4,(Q)

<x

or by
(23) Go(S; x)= xx—ef{l —exp [(t—x)x—01p—texp [(t—x) x~%] S() dt
0

where, without loss of generality, we have assumed that S(0)=0.
Theorem 2. Let

4) —%<o¢<n and §>(n—1)/2

where 8 is a positive integer.
If at a fixed point P(x?, xg, ey x2

25) fr®)=t==L(1]), t—0
where L(x) is a slowly oscillating function at infinity, then
(26) G5 (S;x)=0 {x*+8A=-O [ (x)}, x—r00

Jor x> 3.
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Proof. We denote by S%(x) the Riesz mean of the spherical partial
sums (3) of series (1). According to (4) we have

x28 §8(x) — 23f(x2—z2)6—1 1S() dt,
0

hence

-3
@7 S)=2—

25 08
s! (d)‘3 (22 5° (), .
where the symbol d®/(xdx)® means that the expression x28S%(x) is to be
differentiated 3-tim:s and after each differentiation the obtained result is
to be divided by x, i.e.

a8 Seo- 01 afta] ..%%(x2656(%)5]}.

x dx | x dx

L-t us apply now the Gg—method of summation to the function S(x)
defined by (27) or (28). In virtue of (23) and (27) we have

(29) e(S Xx) = f w(t, x) (td % {228 S8 (l)} d,
where
(30) w=w(t, x)={l —exp[(r—x) x~01}*Lexp [(t—x) x~°].
Since :

o )s {50}~ Zp“” ()

where pa ?, are independent of 7, and p§ =1, we can write (29) in the fol-
lowing form

31 Gi (S; x)—— :Z 2.0 (),
where |

x - dv
(32) Q\,(x)=fw(t, xioe Lo 50 ),
Since °

(—1)“+'"‘ 7

{zss8 )= f (P—p-m =S () d

t8+v 2(m 1

where v$)>0 depend on v, but are independent of ¢, and YM 1, it follows

1
33 lim —— —— {1383} =0
( ) tgr(l) 3 dtv_l{ ()}
for v=1,2,..., 3.
Further,
(34 — {w(t X)1=3+v} = Z §2 W (t)t B+s

7
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for v=0,1, 2, ..., 3, where cf,‘gs are independent of ¢, and e’ =1. By w® (1)

is denoted the derivative of order s of the function w (30) with respect to ¢.
Integrating by parts (32). and according to (33) and (34) the expression (31)
can be written as

re 278 3 g Q ) £5) 5 Q8
Gy (Six) = 222 Z,, {M fw Ors (t)dt}
or

(335) G (S;x) =

. X

3
S w"—e— Z G [ WO (£) 1 S® (1) it
n=0 ¢
where g¢,, depend on 3, but are independent of x, and g5 = L.
In virtue of (24) the conclusion (14) of the theorem 1 holds, i.e

S =pPx*L{x). x—
with
B=221 (1 + 3T {(n— 12} T2 T (1 +5+2/2)}".

and we can write

(36) S%x)=Bx*L{x) AMx)
where
(37 2{x)=14¢2(x), and e{x) -0 when x-»00.
Substituting (36) for S3(7) in (35) we have
- " 2—8 8
(38) Gﬁ (S;x):’yﬁxgoqml:‘m(x)
where
(39 Fon(x)=x"° fl“*‘(m’ @ L anyde,
0
and {7}

wim - xm9{ iymexp [(t—x) xma}}x-»(mﬂ) exp [(t—x) x‘“(’]

(40) P {exp [(1—x)x~ %1},

where P, is a polynomial of degree m in terms of exp [(#—x)x?]. The zeros
of this polynomial, with respect to exp[(f—x)x~%] do not depend on x, but
only on x. The asymptotic relation

41 1= x—x0 ) =y, xoec.

Let the polynomial P, have s zeros tﬂ") (w=1, 2, .... 5) in the inter-
val (0, x). Therefore the sign of w{™ () does not change within any of the
intervals

£ <ty (w=0. 1, 2,.... s), where t9"=0, (%P =x.
This property of w (f) and the asymptotic relation (41) will be used for
evaluation of the integral F, (x) which we shall write in the form
~ t(m) t(m)

Fm(x)xx*e(f f+2 f f] wm () et (D) A(8) dt

r=2 (o1
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(42) CHY 0+ HY )+ S HP )+ H (0.
r=2

At first we shall evaluate the integral H{” (x). A (0)l <l +[e(®)j<] +¢,

in the interval (0, N), therefore
N

HE )] < +e)x7 [w™ @=L dr
0

Suppose that w¢ (£)>0 in the interval (0, N). The proof is the same also if
we suppose that w(™ ()< 0 within this interval. By the definition of slowly
oscillating functions L(f)<L, for 0<s< N where L, is a positive constant.

Then according to (40) it follows
N

[HE” (x)]| < (1 +50) Ly x”(’"‘f‘)"f{l—exp [(r—x) x—0}} - %—m+D
0
-exp [(t—x) x~ %] P, {exp [(t—x) x0T} ¢+ dt.
Since we can choose x so large that for O<t<N and m=0,1,2, ..., 3
{1 —exp [(1—2x) x~0])=~ 4D P, fexp [(t—x) x°1} < M.

where Mg") is a positive constant, we have

HS (x)| < (14¢5) Ly M ™ x=(ni DO ft’"“‘ exp [(t—x) x~9] dt

° N
< K§P x-m D9 exp [(N—x) x =] [1m = d
where K§ = (1+¢) L, M. ’
According (24) m-+a>—1, therefore

(43) |H (x) 1< (14 ¢g) Ly M Nmvatt x=tni D0 exp [(N—x) x~0),

where Ly=Lj(m+a+1).
The integrals H (x) have to b= cosidered for m=1, 2, 3,..., 3. Since

we have supposed that w(™ (f)>0 in the interval (0, N) and that 1§ is the
first zero of the polynomial P,, counting from the left side, then w™ (£)>0

also in the interval (N, ;). Further [A(f)|<1+]e(?)|<1 +e{™(N),
t(lm)

[HS ()] < (1§ (N)) x=0 [w (1) emeo=n {¢7 L (1)} dt
N

and so

where 0<<n<C % Since m=1, 2, ..., 8, it is by (24) m -+ «—n >0, and therefore
£§m

HS (x) | < (147 (N)) xmea0-m [wem (z% max {7 L ()} dt
N

<E=t
(m)
ry

<(l+ < (N)) xm+a—0-—nmax {gnL(E)} fw(m) @) dr.
0<<E N

<E<x
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By the property (iv) of slowly oscillating functions we have

o (m) ' i
]H (x)1<(1+a (V) xm+a=0=nx7 L, (x) won=D (7)] 1
where
Li(x)=L(x), x—o.
L,(x) is also a slowly oscillating function by the property (ii) of slowly os-
cillating functions. In virtue of (40) and the fact that the function w=D ()
is increasing within the interval (W, t{™) we obtain

(49) HE ()| < {60 (1 +7P(N)) x*+m0=0 L (x)

where
CI () =[1—exp (—jiN* 7 exp (—7{) P,,_ [exp(—i™)].

Separately we have to evaluate the integral
HQ (x) = x° [w(f x) t% L (1) n(1) dt.
Since ]:A(t)§<l+§s(t){<1+e£°)(N) for N<t<x, it follows

[HY ()= (14 () x fw(t, %) oo max {En L (2)) dt
N sist

<(1+eP(N)) x~° max {7 L (%)} [wt, x) = ar.
O<CE=Cx N
By the property (iv) of slowly oscillating functions we have
HY ) <(1+P W) x-0.x7L, (x)fw (#, x) P dt.

Since »> 3, and 8 is a positive integer, it follows x> 1, and w(t, x)<< 1. Hence
HD ()] < (1+9 (V) x-047 L (x) M, o1 |,

where M= 1/(x—mn+1). According to (24) «—v + 10 for 0<~q<?, therefore

(45) AR @] <1 +Q W) My a0 L (x).

* The integrals of the form H{”(x) appear for m=vr, r+1, ..., 8§,
(r=2, 3,..., 5). Suppose that w™ (f)>0 in the interval (zf’")1, t%).  Fur-
ther |2 (1)| < l+]s(t)]<l+e(”’)(N) for t% <1<t therefore

t(m)

@] < (L e () 20 [wtm @) o= 10 L ()} .
, £
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According to (24) m+o—x>0, therefore

W)
|H ()| < (L4 (N)) xmea=0- ’"f W™ () max {27 L ()}
£ o

< (L4 (N)) xm 0 , max ELEyW" @] W

O=CE=gx

By the property (iv) of slowly oscillating functions and in virtue of (40) we have
(46) [H ()] < € () (1 -+ (N)) xxbm(=0) L, (x)
where

™ () = [1—exp (=W~ exp(—){") Pucs fexp (=) —

—[1—exp (—/201*= exp (—j7™1) P [exp (—je™0)],
and
Ly(x)=L(x), x—o0.

Still we have to evaluate the integral H(m)(x) for m=1,2,...,9. The

function w(™(r) has the same sign in the interval (¢, x), say, positive. Then
the function wt—1(r) is increasing in this interval, and since wim—D(x)=0,

it is negative. Further |A()|<1+]c(®)|<1+ e(m)(N) for 1™ <t < x, therefore

]H(m)(x) 1 < (1 + s(m) (N)) xwﬂfw(m)(t) fmo—n max {i’i L(&)} dt.
t(m)

Since by (24) m+a—v>0 (m=1, 2, ..., 3), it follows

gHipn) (x)% <(1 +sim)(N))xa-km—G~n max {ET; L(i)} win—1) (Qix(m)
0SB Ly

i. e
¢ TH™ (0)] < CY () (1 4+ (W) x2+md=9 L (x)
where
€69 = —[1—exp (=% exp (—/5™) P lexp (—$™)],
and

Li(xy=L{x), x—ow.
C™ (%) is positive, as wn=b (1)< 0 within the interval 1 << x.
We can choose N such that eS?(N)<e™(N), (u=1, 2, ..., s, *) and

in virtae of (42), (43), (44), (45), (46), (47) we have for m=0, 1, 2, , 3
and »>3
8 | Fm ()] < KEPx=0m00 exp [(N—2x) x0] +

+ (L (N)) € (9 xx4md=D L, (x)
where

CM )= 2 C )+ C™ o).
V::I
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Being t;'")—zx, x—eo {u=1, 2,..., ), we can choose N arbitrarly large,
so that "™ (N)—0. Since

Li(x)=L{x), x—r00
we have from (48)

(49) Fra(x)=0{xxtm3=-0 [ (x)}, x—r00 (m=0,1, 2,....9).
Finally, in virtue of (38) and (49) we obtain
G5(S; x)=0{x*+3U-N[(x)}, x—oo

for »>38 and the theorem 2 is proved.
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