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SUMMARY: Canonical transformations and Hamilton—Jacobi method are
exposed on the ground of the theory of functionals and the generalized Pfaff—
Bilimovié¢ method.

INTRODUCTION

Canonical transformations and Hamilton—Jacobi method are known to play a very
important role in the analytical mechanics of the system of particles [1]. The development
of these branches of mechanics began in the middie of the last century {2]. W. Hamilton [3]
was the first to show that the problem of sclving canonical, or so-called Hamilton equa-
tions can be reduced to the integration of a system of two first order partial differential
equations with the same unknown function; this unknown function being the action with
the undetermined upper limit of integration. The fact that the function to be determined
had to satisfy two partial equations diminished to a great extent the significance of
the method.

C. Jacobi [4] noted that one of the partial equations is not necessary, so that to any
system of canonical equations corresponds but one first order partial differential equation,
later named the Hamilton—Jacobi equation, the characteristics of which are integrals of
the canonical system. The method for the solution of any given dynamical problem comnsists
then in the determination of only one complete integral of the equation, i. e. an integral
containing a number of arbitrary constants equal to the number of the independent variables
of the problem. The so-called Jacobi system is formed then by differentiation of the found
complete integral, and this system leads to the integral of the canonical equations through
algebraic operations only. The problem of solving the canonical equations is thus reduced
to the determination of a complete integral of the Hamilton—Jacobi partial equation and
to the algebraic solution of the attached system.

S. Lie [5] studied this problem from the point of view of the general transformation
theory, on the basis of the theory of groups. He introduced the notion of contact transformations to
the theory of first order partial equations, and, as a special case, defined the so-called canonical
transformations. Those are the transformations from the old to the mew variables, possessing
the property of leaving the form of the canonical equations invariant, and forming an
Abelian group. If the integrals of the canonical equations are conceived as canonical trans- .
formations of the canonical variables from the values at the initial instant to those at any
given instant, Lie’s theory offers a new approach to the Hamilton—Jacobi method. The
problem of determining such a canonical transformations which would yield a vanishing
Hamiltonian, leads to the result that the generating function of the transformation has to
satisfy exactly the Hamilton—Jacobi partial equation. The integrals of the canonical equa-
tions are determined then as above, and the Hamilton—Jacobi method is thus seen to be
closely related to the theory of contact transformations.

Further extension of these results to the field theory is necessarily based on the theory
of functionals, developped by V. Volterra [6, 7, 8]. This theory is of an increasing impor-
tance for various branches of theoretical physics operating with the notion of the field [9].
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The very notion of the functional is a generalization of the notion of the function when
the number of independent variables tends to infinity; likewise, the notions of functional
derivative and differential are generalizations of those of partial derivative and total diffe-
rential. A correspondance can, then, be established between ordinary mathematical analysis
and the functional calculus on the ground of the so-called transition from discontinuum to
continuum, if the ordinary functions are made to correspond to functionals, partial deriva-
tives to functional ones, and total differentials to the functional.

Volterra himself was the first to apply the theory of the functionals to the mechanics
of continuous media [10, 11]. He showed how one can obtain Hamilton equations, the
Hamilton—Jacobi partial equation, and Jacobi theorem in this case from the corresponding
equations for the system of particles, on the ground of the above mentioned principle of
transition from discontinuum to continuum. But, this author just touched the problems,
giving the equations without any analysis of the underlying problems from the mechanical
point of view, so that the full meaning of his results and their mutual relations are nof
clearly seen.

A further step in the direction of application of the theory of functionals in the field
theory is given in the work of G. Moisil [12]. He associated a set of coordinate functions
to a given configuration of the continuous system, and obtained thus integro-differential
equations similar to Lagrange equations. G. Domokos [13] recently gave a generalization of
the Hamilton-Jacobi equation and the Jacobi theorem in covariant form, starting from the
principle of variation of action. His results are, however, given without sufficient proof,
some of the conclusions are not justified, and the example quoted is trivial.

We showed previously [14] that the theory of the functionals can serve as a basis to
extend the Pfaff—Bilimovi¢ method to the field theory. Convenient definitions of the
functional derivative and the differential for the functionals given in the form of definite
integrals were introduced, and a generalization of Pfaffians and corresponding Pfaff equa-
tions was given, so that it was possible to show the way of a generalization of the
Pfaff—Bilimovié¢ method.

This work will be devoted toa study of canonical transformations and of the Hamil-
ton—Jacobi theory in the field theory, on the ground of the generalized Pfaff—Bilimovié¢
method. In the first part we purport to introduce the notion of the canonical transformations
as integral functional transformations from the old to the new canonical variables, and to
expose various types of the transformations. In the second part, an approach is made to the
Hamilton—Jacobi method, by way of canonical transformations. It is, furthermore,
shown how fundamental equations of this method can be obtained, and the results obtained
are analyzed. A characteristic analogy with the mechanics of particle systems is noted.

1. CANONICAL TRANSFORMATIONS
Definition of the Canonical Transformation. — Consider certain integral trans-

formations of the old field functions ¢§; and momentum densities =; to new
ones, ¢; and =;, which are of the form:

[V = Fu @i bysmi, x5, 1) dV

f;c—idef %Zi(‘l"i’l'pij,ni’xj’t)dV’ (i:l, 2, ..., I’l);

(1.1)

where we shall assume that the domain of integration is the entire volume V
in wich the field functions are defined. Written in the form of functionals,
these transformations are:

v ="Fy i, m, 1
1.2)
[mdV = Fy [, 71, 1], (i=1,2, ..., n).
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Under the assumption that these integral equations can be solved for volume
integrals of the old variables, we have:

fq"ianGli[@‘is o, 1]

f’tidV=G2i [q_);,;,-,t], (i=l, 29 see s n)-

(1.3)

If a functional:
(1.4) H=[$dv=H b, =, 1]

exists, such that the differential equations of the field considered in the new
variables preserve the form of the Hamilton equations, i. e.:

—- ST T sH
Cf—m:‘-'—wH __ﬂ:_s_f]__:; (lmls 21 LERRE} an)!

1.5 =,
( ) dt aLIJ‘ dt 87‘5,‘

we shall say that (1.1) or (1.2) repiesent a canonical transformation.

Let us now examine the conditions necessary for a transformation to be
canonical. In our previous work, it was shown how Hamilton equations can
be obtained as Pfaff equations by the aid of the generalized Pfaff—Bilimovié
method, if the element of action, transformed to canonical form, is taken as
the functional Pfaffian, i. e.:

(D:_-Ldt:.-f(i :r,-dq;,-—-—g)dt)dV.

£

On the other hand, it was established that two finctional Pfaffians differring
by a differential with respect to a parameter of any functional, are equivalent,
i. e. yield the same functional Pfaff equations. The role of the parameter is
played here by the time, so that it is possible to conclude that the condition
looked for is:

(1.6) [(; x,dq;,-@dt)dVaf(g 1:,-d¢,--—.‘bdt)dV+ 4G,
where:
(1.7 G=[GCaV=Gd, m, b, t].

The equation (1.2), however, represents a system of 2n relations among the
old and the new variables, so that only 2n among the arguments of the
functional G are independent. This functional will be called generating func-
tional of the canonical transformation.

Generating Functional of the Fundamental Type. — Let us take first
the case in which G is a functional of the old and new field functions
and time:

(1.8) G =Gy [Y, i 7).
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In view of the formula for the differential with respect to parameter of a
functional of the type considered, we have:

(1.9) dG1=f(z i‘ ddi+ %Ssi,"”" SSthdt)dV

so that the condition (1.6) is:
f(z w,.dq;,.—@dt)dV:f(ﬁ E,d@-@dt)dm
i=1 i=1

SCERE R

In this case we have further:

fssidV:f‘)@l dV~—f(, dv
t

3Gy 496
3t ot

i. e.:

(1.10)

so that the above relation can be written in thz form:

n

iy S Zi‘qi,fn,.dV—j d@,-fE,-dVHFI—H)dt:
; |

-5 a3, 8GldV ‘3 d—@fﬁi av 29 4,

i= 4’ i=1 8 i

where the theorem of the mean values is used, the bars above the differentials
denoting the mean values of these in the volume V. As the differentials d4;,
d=n;, and dr are mutually independent, the same will hold for their mean

values d{,, d=;, and for dt; in the above equality, therefore, the coefficients
of these magnitudes should be equal at both sides:

fn,dV=f§9—1dV, f?,.dV:—fs—?ldV, (i=1,2,...,n)
3¢y 3,

(1.12)
9G,

H=H-+ )
ot

These relations determine the canonical transformation wiih the generating
functional of the type (1.8). Since they are of the form:

fﬂ"idV = fcpli (q)i’ "Pija 471" ‘17;7, Xis t) dv
/;th = f<P2i (qji, qjij7 "I—J;’ :P—ija Xjs t) dv
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or, functionally,

f‘”:'dV:Fli [, i, 1]
(1.13)

[7dV = Fy s, . 1),
they form a system of 2n integral equations with ¢; and =; as unknown

functions. The first n equations of the system (1.12) are to be used to de-
termine the new field functions, in terms of volume integrals:

(1.14) [0dV =Gy, 5 1]

and if the results are inserted into the second group of » equations of (1.12),
the new momentum densities can be obtained in the form of volume inte-
grals, too:

(1.15) [mdV = Gylds, 7, 11

The canonical transformation (1.2) is thus determined, and the last equation
of (1.12) then yields the new Hamiltonian H.

Let us now formulate the condition for G, that the equations (1.12)
can be solved. As the other half of these is already explicitly solved for

momentum densities integrals, f m;dV, it remains to establish only under
what conditions the first half can be solved for f $;d V. Itis to be noted that

if f @; dV can be determined, their differentials 4 f @id V can also be found,

and vice versa; on the other hand, since the differentiation with respect to
parameter and integration over ¥ are mutually independent operations, the
mean value theorem yields:

df4dv = [dbdv—-dy,[dv
i e.:

(1.16) df $;dv=v-dy,

so that the determination of 4 f §; dV can be reduced to determination of d{;,
view of their mutual proportionality.

The first half of equations (1.12) then yields:

dfv:,—ded ﬁdl/:f{i (fBGldV)d
B‘Li j=1 8(\{’1 8‘?:
beld )dgt;ﬁfi(f@dv)dz}dy
3% 3¢, 8t 3y

which can be written in the form:

(1.17) ; fszj(fzzjdlf)dlf f{dw, ,283, (fijldV)d%

. ;f Usii,dV) d:}dV
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This system is linear with respect to 2175,, and can, therefore, be solved for
these quantities if the determinant of their coefficients does not vanish:

(1.18) Ijs_%, (f%%dV)dV { #0;

and this is the condition looked for.

If k=0, i.e. if the field functions reduce to functions of time only, as
in the case of a system of particles, the functionals will reduce to ordinary
functions, functional derivatives to partial ones, and functional differentials
to total differentials. In this case all volume integrals reduce to zero-fold
integrals, i. e. to the integrands, and (1.2), (1.3), (1.6), (1.12), and (1.18)
become wellknown relations of the mechanics of particle systems.

Other Types of Generating Functionals. — We shall now proceed to
transform the condition (1.6), in order to obtain generating functionals
depending on other arguments. Let us rewrite it first in the form:

(1.19) z n,.dq;,.dV—i md;dV + f(‘gj—@)dtdlfzdcl.
i=1 i=1 .

Since the differentiation with respect to parameter and integration with respect
to space coordinates are mutually independent, we can interchange them to
obtain:

d [mlidV = [dmd)dV— [(mdb+ 3 dm)dv,
and, hence:

(1.20) JmdGdv —d [ mldV—[$dmdV.

The above relation (1.19) can now be writien as:
=1

/nid¢idV~id mbdv zfq?, dmdV+ [(5—.,\”9)dth=dG1
i=1 i=1 ¢

i ¢

or:

(1.21) f{éln,-d% +él$,-d7?,-+(5-@)d¢}dvzd(61+jéa@ dV).

It is clearly seen that bracketed expression on the right can be treated as a

functional of the variables {;, =;, and 7; we shall designate it by Gj:
(1.22) GzzGﬁfzv?,-@dV:Gz (s, 7 1.
. i=1

In view of the formula for the differential of the functional with respect to
parameter, it follows:

" Y "8G, .~ 3G
d(G o[ SE, dV),,dG /( 0% 4yt —,%dn,.+——idt)dv,
! . ,Zg * . 221 3Y; v Z:l L 3t
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so that according to the theorem of the mean value and relaticn (1.10) we
further have:

i f)n:,dV zn:
=1 i=1
‘imf%jidmﬁﬁfwzw ‘)szz

i=1 i

After equating the coefficients of dy;, d=; and dr on both sides, we obtain:

fﬂ:,dV /SGZdV fq;,dV [ “Ztay

(1.24) (i=1, 2,.... n

dif@dm(ﬁ-md
(1.23)

I[f the first term of (l1.19) is transformed, the following relation will
result:

—z"fq;,-dn,.dV_j' /'Ed¢‘;dV+ / B—)didV -
i=1 i=1¢

(1.25) ’
e d<Gl—./ iél ; q;,-dV) >

so that upon introduction of a new functional:
(1.26) Gy=Gyi— | S mididV =Gylm, g, 1]
J i=1

we obtain:

[7 J——

—ﬁ%}j'¢idv—z dv, [ 7 av e (H—Hydi-
i—1

(1.27) ‘
st‘;dV+z;1_4J,~ 2Gs gy . 20 dt,

i=1 3y ot

and hence:
fq»,th-—fSGwV fE,.dV: :%E (i=1,2, ..., n)
(1.28) "
H-1 %%
ot

Finally, if both first and second terms of (1.19) are transformed, one
obtains:

-3 q;,.dn,.dmﬁfﬂ;;d;?,.dmf(b—@)dw;
(1.29) - =

~d(G1+f§n:;i@dV— i Wi‘-l‘idV),
i=1 i=1
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and, if the new functional:

(1.30) Go=Gy+ | SmbdV— | S mdV=Gylm,m, 1]
Joi=1 i=1

is introduced, it results:

—ﬁﬁf@idV+iﬁfEdV+(ﬁ—H)dt:
i=1 i==1

(1.31)
—zdn, 3Cs gy Zdnf“G4dV +2Gs 4,
T dx; ot
and, hence:
f¢,dV~—f8G4dV f¢,dV fSG"‘dV G=1,2,...,n)
(1.32)
H-h+9%
o1

The established relations permit the determination of the canonical
transformations in a manner analogous to that of equations (1.12).

2. HAMILTON — JACOBI METHOD

Hamilton — Jacobi Equation. — Consider now a canonical transformation
of the type (1.2) for which the transformed Hamiltonian (1.4) vanishes, i. e.

2.1) H-[§av-o;

assume, further, that the generating functional is of the type (1.22) and
designate is by S:

2.2) G=Gy=S [, m, 1].

According to the formula for the differential of the functional with respect
to parameter, in view of (2.1) we have:

-
dH - f( _d¢, Z—gdn,-JrZ—[jdt)dV:O

i=1 O

and, considering further (1.10), also:

fp de——zo,

so that the above equation can be written in the following form, using the
theorem of the mean value:

(2.3) id@f-—leJr > dn,f—,,dV 0.
i=1
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Since the mean values d‘x.l_j, and ;ﬁ:i of the differentials are independent, this
equality will hold only if the corresponding coefficients are zero; thus:

2.4) [ _.dV 0, f~:dV 0 G-1,2, ...,

Hamilton equations then yield:
_ [ 4mgy g, f gy,
dr

or, since the differentiation with respect to time and iniegration over volume
are independent and thus interchangeable:

d [— d -
2.5 — | mdV=0, — | 4;dV=0.
(2.5) dtf drfv

These equations clearly show that the integrals involved should be equal to
arbitrary constants:

(2.6) [mav=4, [4dv=8,, (i=1, 2, ..., n),

and, since these arbitrary constants can be represented as volume integrals
of arbitrary functions of the position variables, it is easily concluded that the

new variables m; and {; are arbitrary functions of the position coordinates,
but not of time; thus:

(27) ;i“ai (xj): ‘pt Bt (x]) (i: 1: 2’ cae s n),

o; and B, designating the arbitrary functions.

Since the generating functional of the canonical transformation considsred
was chosen to be of the type G, equations (1.24) and the condition (2.1) yield:

f = dV = f8G2dV fq;de fSszV

H-H+ (}_qi_
ot

which, in view of (2.2) and (2.7) can be written as:

2.8) fn,dV f—a’V f{&,dV f—~——dV (i=1,2,...,n)

and:

(2.9) 95 m-o.
o1

In this last equality, H is a functional of the form:

H=[9dV—H, m, 1]
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The first set of equations (2.8) shows then that w; as an iniegrand can be

replaced by gﬁ’ it is in this sense that we write:
3

(2.10) Tr,-ﬁj, (i=1,2,...,n),
8¢

and if this equation is used in the Hamiltonian density, it results:
H H “pl) 8 S
N.-
so that (2.9) becomes of the form:

05,
. s, s
et o [ 3¢; ]

This functional differential equation is called the Hamilton—Jacobi equation of
the field theory.

Jacobi Theorem. — We shall now show how a given problem of the
field theory can be solved by the aid of the Hamilton—Jacobi equation. Let
us assume that one solution of the Hamilton—Jacobi equation is determined,
no matter how, and that it is of the integral form:

(2.12) S=f§ (‘pi’ ‘pij’ %y aij; xjs t) dV+ SO

where a; are arbitrary functions of the position coordinates, and S, an arbi-
trary constant. Written as a functional, this solution has the form:

(2.13) =8 [, o, 1]

and it is the so-called complete integral of the Hamilton—Jacobi equation con-
sidered.

In the case we are examining here, the new variables =; and {; are, in
view of (2.7), arbitrary functions of the position coordinates, so that the ar-
bitrary functions figurating in (2.13) can be taken to as new momentum
densities ;:

(2.14) = o; (). (i=1; 2..., nj

The new field functinos ¢; will, then, be certain arbitrary functions of the
position coordinates, too:

(2.15) $i=Bi(x)), (i=1,2,..., n).

It should be noted that (2.8) coniains only derivatives of the functional S,
so that the arbitrary constant in (2.13) is not essential and can, therefore, be
taken as zero. Relations (2.8) then yield:

[rav= [t

(2.16) .
[B,dV f S”’““"’]dV (=1, 2,..., 1.
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This system of equations can be solved in a manner analogous to that applied
in solving (1.12). They are of the form:

[midV = [ i iy by oy x;. ) dV

f BidV = f-CPiz Wi, Yijo s 25, X5, ) dV

or, if the appropriate functional notation is introduced:

f"‘?idV:(Du[‘I‘i, a;, 1]
2.17)

[B:dV = @y [, 04,1, (=1, 2,.... 1)

and represent, ihus, a system of 2n integral equations with ¢; and =; as the
unknown functions. From the second half of these equations, the field functions
{; can be determined in the form of volume integrals:

(2.18) [4dV=Fylo i, 11, (=1,2,....n),

and inserting these expressions into the first half of the system considered,
momentum densities are likewise determined:

(2.19) [ dV = Fy [0, 81, 11, (i=1,2,...,n).

Let us examine now the condition necessary for the system to be sol-
.able. Since S is a functional of type G,, differring from G, only by its de-

pendence on T, i._-e. on «;, instead of {;, by analogy with (1.18) we obtain,
substituting ¢; by «;

(2.20) ng; (fgf dV)dV];éo.

We have thus seen that the solution of the Hamilton equations can be
reduced to the determination of a complete integral of the Hamilton—Jacobi
equation, so that the following statement can be formulated:

If a complete integral of the Hamilton—Jacobi equation is found in the
form (2.13), on condition (2.20), the solution of the equations (2.16) will yield
the solution of the problem considered in the form (2.18) and (2.19).

This is the generalized Jacobi theorem.

To demonstrate the meaning of the functional S, we shall form its
differential with respect to time as parameter:

. 3S r 38 3S
5 (8 55 2 2 )

i=1 i

which, since in view of (1.10) we have:

J ot ot

S av %

’
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yields:
no— r8S "o S . oS
.21 AS=S d if_ av+ docif-—— av+22 ar.
) ig:l qJ 8‘411 ,2:1 80!,' ot

According to (2.16), (2,11) and (2.6), we further have:

ds— S d¥ /)rc,-dV+ S ZZZ-fB,-dV—Hdt=f( » n,-dq;,-—g)dz)dm S Bida.
i=1 « i=1 i=1 i=1

The first term on the right is easily identified as the element of action trans-
formed to the canonical form. Since the mean value of the differential is
equal to the differential of the mean value, the above expression can be
further transformed: ‘

(2.22) dS=Ldt+3 Bida,
i=1

and, upon integration with respect to time from 7, to 7:

s=fLar+ 3 BIG) Gl

The arbitrary functions being independent of time, their mean values should
be equal at the two instants:

(@) = (),

so that we have:

(2.23) S=[ La.

1

Hence, the functional S is seen to coincide with the action with the variable
upper limit of integration.

If k=0, functionals reduce to ordinary functions, functional derivatives
and differentials become ordinary partial derivatives and total differentials,
and all integrals considered reduce to zero-fold ones, i. e. to the very integrands.
In this case, the relations (2.1), (2.6), (2.11), (2.13), (2.16), (2.20) and
(2.23) reduce to the well-known equations of the mechanics of the system
of particles. -

Case of Conservative Fields. — Consider now the case of a conservative
field, where the Hamiltonian does not depend on time explicitly, and, under
very general conditions, represents the energy of the field:

(2.24) H=H[;, ©]=E.

In this case, we shall look for a solution of the Hamilton—Jacobi equation
in the form:

(2.25) S=—A,t+8],
where:
(2.26) A= [ dV, S,=8;[¥, .
Since:

0S__, 385 38

ot 3y 8y,
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inserting (2.25) into the Hamilton—Jacobi equation (2.11) we have:

~A1+H[q)i5 Si]:()’
3¢

i
or

88,1
(2.27) H[nl:,-, S—%J—Al-

The constant A4,, according to (2.24) is the energy of the field, and the
obtained equation is the Hamilton—Jacobi equation for the conservative
fields.

Let us now assume that one of its solutions is determined in the form:
(2.28) Sy =81 [i, ]+ S,
Since, according to (2.25) and (2.26):
88 _ 8A11+§_Si=_%t+_8§_1:§£1

__811' f
30(, du; Sa; oa; do;  Soy

where 38;; denotes Kronecker symbol, equal to unity for i=1, and zero other-
wise, relations (2.16) become:

fnidefSSIN)nml]dV
8
f;a,dV f{SS‘SN'“ ] Sit}dV (i=1,2, ..., n.

This system is solved in a manner similar to that applied in (2.16), and the
solution is of the form:

f b dV=F o, B, 1]

[ = dV=F [a, 8, 1] (i=1,2, ..., n).

(2.29)

(2.30)

Method of Separation of Variables. — Consider again a conservative
field, and assume that its Hamiltonian can be represented as a sum of terms,
each depending on one single field function and the corresponding momentum
density only. If the underlined variables are used to express the i-th member
of the set of variables only, the above assumption can be written in the form:

(2.31) H= z H,- [q}i, TCi],
i=1 -
so that equation (2. 27) becomes:
(232) S‘ H,' 4},‘, 8—§1 :Al
i=1 =

We shall attempt now to find a solution of this equation in the form:
(2.33) Sy=73> Suildi, w],
i1

3 Publications de I’Institut Mathématique
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since:
8S; 38y
3 8¢
the equation (2.32) yields:
n 3 Sy;
(2.34) S w, [g fsi—.:’:Al,
i=1 oYi

The left side of this equation is a sum of terms each depending on one single
field function and the corresponding momentuin density only, so that the
equation will be satisfied if each term equals a constant; thus:

(2.35) H,[gi, %—i}?]:Al,, (i=1,2,..., n),
with the condition: o
(236) Z A1i=A1‘

i=1

Hence, the assumption (2.31) leads to a decomposition of the equation (2.27)
to n mutually independent equations (2.35), each containing only one unknown
functional S;; and one corresponding independent variable ¢;. When the solu-
tions of these n equations are determined, the solution of (2.27) is given
by (2.33).

At the end we should like to express our gratitude to the colleagues
Dr Zvonko Marié, BoZidar Mili¢ and Ljiljana Dobrosavijevi¢ for very useful
discussions and suggestions on this problem.
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